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FOREWORD

The present study, the third of the ICMI series, is the
result of a cooperation between the Committee on the Teaching of Science
of the International Council of Scientific Unions (ICSU-CTS) and the
International Commission on Mathematical Instruction (ICMI). It is
based on the work of a Symposium held in Udine (Italy), from 6 to 10
April, 1987, at the International Centre-for Mechanical Sciences (Centre
International des Sciences Mécaniques = CISM).

The study began by a careful investigation about the way mathematics is
taught to students in another major subject in a few typical universi-
ties: Eindhoven Technical University in the Netherlands, Jadavpur
University of Calcutta, India, Eotvos Lorand University and several
other institutions in Budapest, Hungary, Florida Agricultural and
Mechanical University in the USA, University College, Cardiff, U.K.,
University of Southampton, U.K., Université de Paris-Sud a Orsay,
France. The past and current presidents of ICSU~CTS (the physicist
Charles Taylor and the biologist Peter Kelly) took part in the program
committee, which included also the president and the secretary of ICMI,
the mathematicians Tibor Nemetz and Fred Simons, the statistician
Elisabeth de Turckheim, and the physicist Pierre Lauginie. The Program
committee issued a discussion document, which was circulated to all
national representatives of ICMI, and to various institutions. It was
published in the journal L'Enseignement Mathématique, tome 31 (1986),
pp. 159-172, and it also appeared in French, Italian and Spanish ver-
sions. Abstracts or quotations appeared in other scientific or voca-
tional journals, it was discussed among members of several scientific
institutions (including the Académie des Sciences de Paris) and among
professionals, for example the Fondation Bernard Grégory. Contributions
to the discussion were received from many countries; some are reprinted
in this text, others, including the discussion document, in the volume
of Selected Papers to be published by Springer Verlag (see p. 92).

The meeting in Udine was attended by 37 participants, on invitations
issued by the program committee. The generous hospitality of CISM -
located in a beautiful historical mansion - and the working atmosphere
made this symposium pleasant and profitable. The main reports - by
Bony, Murakami, Pollak, Simons — are in the present book, and are pre-
ceded by a survey article written by the four editors of this volume.

Financial help was received from UNESCO, ICSU, IMU (International
Mathematical Union), CISM, the Royal Society, the Ministére de 1'Educa-
tion Nationale of France, IBM-Europ, IBM-France, and many universities
or institutions which contributed to the expenses of participants. We
sincerely thank all of them, and we hope that the success of this study
will prove, once again, that international actions of this type meet a
real need and have an important effect,

A.G. Howson
November 1987 J-P. Kahane



ON THE TEACHING OF MATHEMATICS AS A SERVICE SUBJECT

La science est continuellement mouvante dans
son bienfait. Tout remue en elle, tout change,
tout fait peau neuve. Tout nie tout, tout
détruit tout, tout crée tout, tout remplace
tout. La colossale machine science ne se
repose jamais; elle n'est jamais satisfaite.
«... Cette agitation est superbe. La science
est inquiéte autour de 1'homme; elle a ses
raisons. La science fait dans le progrés le
role d'utilité. Vénérons cette servante
magnifique.

Victor Hugo, L'art et la science, in William
Shakespeare (1864).

The title of the study may shock. Mathematics is the most
ancient of the sciences. Why should it be in the service of others, or
worse still, in the service of technical activities? In reducing
mathematics to a service role, does one not belittle its contents, its
image? Let us immediately state that in our view 'mathematics as a
service subject' does not imply some inferior form of mathematics or
mathematics limited to particular fields. We mean mathematics in its
entirety, as a living science, able - as history has ceaselessly shown
- to be utilised in, and to stimulate unforeseen applications in very
varied domains. The teaching of mathematics to students of other dis-
ciplines must now be accepted as a fact, a social need and, also, a
relatively new problematic issue. In this introduction we shall try to
show the extent of the phenomenon, the social needs which it expresses,
foreseeable developments and likely results in terms of choice of sub-
ject matter and teaching methods, and finally the size of the new
problems which confront students and teachers alike.

I Everywhere there is a need for mathematics

1 As 1s common knowledge, the chance fact that there was
personal enmity between Nobel and Mittag-Leffler resulted in there be-
ing no Nobel prize for mathematics. But there are still Nobel prize-
winners who are mathematicians. The Nobel prize for chemistry was
awarded in 1985 to two mathematicians, H.H. Hauptman and J. Karle, for
the development of methods for the determination of crystalline struc-
tures, based on Fourier analysis and probability. To quote W. Lipscomb,
who presented the prize: ''The Nobel prize for chemistry is all about
changing the field of chemistry. And this work changed the field."
Before that, G. Debreu and L.V. Kantorovi¢ had been awarded the Nobel
prize for economics for work which was also of a mathematical nature.
Mathematics cannot be excluded from the family of sciences. It is an
integral part of scientific thought, a necessary component of contem—
porary advances in all scientific fields.
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In physics the link with mathematics extends to Galileo and before:
mechanics, optics, electro-magnetism, relativity, quantum theory are
inseparable from the calculus, the geometry of surfaces, partial dif-
ferential equations, non-euclidean geometries, Hilbert spaces, ... .
The use of computers has recently given physics an intermediate com-
ponent between theory and experience, simulation, which is very close
to a purely mathematical activity, experimentation on a computer.
Simulation in physics and mathematical experimentation often operate
on the same objects in the same way. They create new subjects of
interest and cause old ones to be resurrected, for example, fractal
geometry.

Informatics has a profound influence on all sciences. Yet the link
with mathematics is essential. The first computers were the realisa-
tion of Turing's ideal machine. Mathematical problems are a testing
ground for informatics. The algebraic and algorithmic aspects of
mathematical theories are benefitting as a result. Discrete mathe-
matics takes on a new significance. Parallel processing already
suggests research avenues involving combinatorics and differential
geometry.,

Chemistry is a source of many difficult mathematical problems - as
Hauptman and Karle's success shows.

Medicine uses sophisticated tools which necessitate cooperation be-
tween physicians, physicists and engineers. Mathematics can form a
common reference point.

Biology, like economics, makes use of statistical models. Linguistics,
geography and geology all use concepts and techniques which demand a
solid grounding in mathematics for true mastery.

Engineers, whatever their special branch of activity, have to calculate,
to construct models, to test hypotheses. Many technical problems,
ranging from coding (for bank or military purposes) to geological pros-—
pecting, lead to, and draw upon, important research areas in 'pure'
mathematics: the divisibility of integers, the search for prime
factors, the theory of 'wavelets' in signal analysis.

2 That is not all. Mathematical concepts now surface at all
levels of social life. Let us take three simple examples.

Each individual is now confronted with an avalanche of numerical data
and constant changes of scale (from the price of goods and other pur-
chases to the National Budget, from atoms to galaxies, from nanoseconds
to geological time spans). The conceptual tools needed to master such
data and changes of scale exist: they are, at a fundamental level,
numbers written in standard (exponential) notation and, at a higher
level, geometric representations and data analysis. Changes of scale
in the exploration of figures — a kind of intellectual zoom -~ corres-
pond to modern notions of measure and dimension. To understand our
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different environments, modern ways of 'calculating', and modern views
of geometry and analysis offer remarkably well-adapted tools.

For the individual, for groups, and for humanity as a whole, the eval-
uation of risks (car accidents, nuclear accidents, geological catastro-
phes) has become a necessity and it alone enables us to make rational
decisions. Probability is the means appropriate to such evaluations.
The concept of probability allows us critically to examine data and
suppositions. Acquiring an understanding of probability should be -
and how far we are from attaining this goal - a key element in the
development of general critical faculties.

In the fields of production and the service industries, information
technology and automation have caused programming and 'control' to
become essential activities. The conceptual tool adapted to program-
ming is the algorithm, that is to say, a systematic procedure enabling
us to solve a whole class of problems. Thus, an algorithm is a means

of governing thought which is well adapted to the governing of machines.

Arithmetic and geometry, analysis, probability, algebra and in partic-
ular algorithmics have a totally different meaning today, and offer far
more, than they did two centuries ago - a time when discussion still
occurred on whether 2 could really be called a number. Some modern
concepts must now become part of common consciousness, and they must be
integrated into higher and professional education if space cannot yet
be found for them in the general school curriculum.

3 In higher education mathematics is now taught to a wide
range of students - diverse on account of their backgrounds and also
because of their specialisms and aspirations. At the beginning of the
century one could, as ICMI did in 1911, confine attention to the teach-
ing of mathematics to engineers. Today, however, one must take into
account the needs of all future professionals: architects, doctors,
managers, etc. Whatever the major subject studied, mathematics has
become a necessary adjunct: that is what we call 'mathematics as a
service subject'.

The topic is important - in respect of a general concept of mathematics
education - for at least three reasons.

Numerically, it involves many mathematicians in higher education (in
some institutions in Canada up to 807 of mathematics teaching is to
students studying other disciplines).

Socially, it corresponds to the impact of mathematics on all aspects
of everyday life.

Intellectually, it forces us to look at things from a new angle - for
instance, to perceive that there are many routes by which one can come
to mathematics.
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Nevertheless, the variety of situations is extremely large. Not only
because of the diversity of students already remarked upon, but also
because of different national traditions and variations in the struc-
ture of institutions of higher education. A general description
becomes almost impossible. The papers which follow, and more particu-
larly those in the volume of Selected Papers, will give the reader some
idea of this wide variety.

Although important and varied, the field is relatively ill-known. In
general, professional mathematicians do not see the service-teaching
in which they participate as particularly rewarding. It is a part of
their activity which is often hidden, in particular from students of
mathematics and from future teachers of mathematics. As a result,
secondary school teaching does not benefit from innovations introduced
into universities as part of service teaching.

4 Let us stress once again the social importance of this
service teaching - its importance goes well beyond meeting an explicit
social demand. Nowadays this social demand is expressed mainly through
the voices of employers and through those of colleagues in other
disciplines.

Some indications of the demands of employers is to be found in the paper
provided by the Bernard Grégory Association (Selected Papers). We note
one surprising fact: when engineers from the French Electricity Board
were asked which discipline they felt nearer to, mathematics or

physics, 907 chose the former and only 10% the latter. The paper by
Henry Pollak in this volume illustrates the enormous need for math-
ematical training which arose in Bell Laboratories, and the magnitude

of the preseat demand.

Demands from sundry disciplines are clearly very varied and depend not
only on the disciplines studied but also on the level at which studies
are taking place. One can distinguish two types of subject. In those
disciplines of the first type - physics, astronomy, theoretical
chemistry, parts of engineering science - certain essential concepts
are mathematical in nature, data are treated in a quantitative way,
numerical solutions are obtainable to given problems through the use
of mathematics: it can be said that mathematics permeates the whole
of the discipline. Within the disciplines of the second type -
biology, economics, etc. — mathematics sheds light on certain concepts
and is used to set up or exploit quantitative models, often far re-
moved from reality. The attitudes of students towards mathematics
tends to differ greatly according to the type of their major discipline.
This gives rise to equally different pedagogical problems.

5 To sum up:
(a) More than ever, and increasingly so, mathematics interacts

with other sciences and with technical activities in which science is
strongly represented.
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(b) A part - changing - of mathematics represents an integral
part of the general culture of each age. In our time no individual
should be deprived of this component.

(c) Mathematics as a service subject represents a very import-
ant activity within institutions of higher education, a very varied,
very interesting and ill-understood activity.

(d) Explicit demands for mathematics to be taught as a service
subject are already important and they are growing. According to
career aspirations and choice of major discipline, mathematics appears
sometimes as indispensable, sometimes as useful but of secondary
importance. Ways of teaching must be adapted to match these different
types of demand.

II What is changing, what is to be done, and why?
1 We live in a rapidly changing world, the sciences are
advancing, technologies are changing, societies are being modified.
The result is new problems, new means and possibilities, and new needs.
Let us quickly review what implications this has for mathematics.

As in other sciences, the output in mathematics (as measured by pub-
lished papers) is increasing exponentially: it has regularly doubled
every decade since the beginning of this century. In 1987 we are
talking of more than 100,000 papers. It may very well be that this
trend will continue, but in other forms (for otherwise where will all
the paper come from!) as an increasing number of countries get in-
volved in mathematics research.

Is the social assimilation of new knowledge on this scale possible?
That is a big question which can also be posed for other sciences.

Yet true scientific progress is the concurrent development of know-
ledge, its dissemination, and its assimilation by the public at large.
The question then is to pass from development to progress. It concerns
society as a whole and each individual in particular. It is not pos-
sible for everyone to know everything; but we should not believe that
even today's specialised knowledge will remain permanently out of reach
of most people.

Information technology has come into being at a most opportune time,
for through it new ways of storing, processing and disseminating data
have become possible. We therefore have new means of conserving and
communicating acquired knowledge. Yet consultation of documents stored
on disks and cassettes, and the diffusion of new knowledge necessitate
improved means of catologuing and listing, and the production of
abstracts, syntheses, manuals and guides. These intellectual tools,
which emerge slowly but surely, are the indispensable accompaniment of
purely technical tools. They will quite likely continue to appear in
printed form; they will be used in research, in production and in
teaching. Contrary, perhaps, to a generally accepted notion, new tech-
nologies are not going to make recourse to books redundant in the
process of teaching. They will make such recourse more necessary than
ever.,
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On the other hand, new technologies give rise both to new possibilities
and new demands for mathematical research and for the teaching of math-
ematics. The first volume in the ICMI study series dealt with the
influence of computers and informatics on mathematics and its teaching.
Let us extract from that a few ideas which directly concern the teach-
ing of mathematics as a service subject.

New possibilities: the use of the computer allows one to illustrate
concepts and methods (for example, differential equations), to experi-
ment (an essential phase of research), to assist memory and replace
technical virtuosity (in particular, with the rise of symbolic manipu-
lation), to adapt learning to the potential and rhythm of an individual
student (CAL).

New demands: in their professional life, computer-users must know what
to ask of computers and how to interpret the results they obtain.

Those users must, therefore, have at their fingertips knowledge and
concepts which are more varied than hitherto. Computers can free the
users from most mechanical drudgery related to the learning of mathe-
matics (memorisation, execution of algorithms), but they demand more
imagination, creativity, critical faculties (conception of algorithm,
stability, sensitivity to initial conditions, detection of errors,
control and exploitation of results). In particular, statistical soft-
ware is becoming a more and more familiar object and the demand for an
understanding of statistical methods is becoming more explicit.

Fortunately, when confronted with these new demands, mathematics has
produced and is continuing to produce a flow of general concepts and
powerful methods. The development of science is not merely an accumu-
lation of knowledge but a permanent restructuring. It is this re-
structuring which enables mathematicians not to get lost in the mass of
contemporary output, and enables students to assimilate a non-neglig-
ible part of mathematics rapidly and deeply. To put it more precisely,
it is when general concepts and powerful methods are brought into
being - which are the big intellectual tools for the world of machines
and the world of men - that the problem of their assimilation begins,
Choices become necessary in the subjects to be taught and new methods
of teaching have to be introduced.

2 Let us examine how the choice of subjects presents itself.
It obviously depends upon the future profession of the students and on
the teaching they receive in their major disciplines.

There are two possible criteria. The first is to choose the subjects
that one imagines will be those most useful in the course of the
students' future professional life. The second is to teach what is
immediately usable by students in their learning of their major
discipline.

The second criterion is often what colleagues teaching the major
discipline spontaneously demand: the necessary mathematics is that
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which we need, and it should be supplied at a speed to match the
demands of our teaching. It can also correspond to the demands of
students who seek a certain coherence between the mathematics teaching
and those courses which are utilising mathematics. Such demands can,
in many cases, induce mathematicians to improve the choice of topics
which they teach, the order of presentation and the way in which they
introduce or illustrate mathematical concepts. It can provoke a
requestioning of certain habits and of traditional curricula. Never-
the less, it often leads to the formulation of impossible demands (for
example, the chemist or physicist may wish to use functions of several
variables long before the mathematician has been able to introduce
them). Above all, its essential weakness is to ignore the first
criterion.

It is this first criterion which should be the fundamental one. But

it means that choice must depend upon a future of which we are ignor-
ant. It is, therefore, hazardous and it necessitates, even much more
than in attempting to satisfy the second criterion, that mathematicians
work 1in close cooperation with colleagues working in the major discip-
line. Very often those colleagues demand of mathematics something
other than a justification of the use they make of it. They wish their
students to learn mathematical modes of thought and the mathematician's
various modes of expression: abstract exploration, geometric repre-
sentation, an intuition into the calculus, then logical deduction and
formal rigour. The reader, for example, can find in the Selected
Papers volume, the views of physicists from the Paris Academy of
Sciences who demand that geometry should once more be given a prominent
place in mathematics for physics students, since geometric intuition

is essential for the physicist. There is an equally explicit demand
from the engineers (as is shown, for instance, by Pollak, Aillaud,
Roubine and Sinha).

Confronted with these two criteria, the mathematician can legitimately
take the initiative. Very often, what one can and must teach nowadays
depends upon discoveries or formulations made in the last thirty years,
and, therefore, unknown when many colleagues in other departments

were students. The mathematicians are in a position, therefore, where
it is up to them to formulate proposals.

3 Let us begin by proposing an exclusion from existing
courses, that of most exercises on differentiation and integration,
partial fractions, inverse trigonometric functions, etc. These even
today represent a large part of many service courses for first year
students. They do not aid the learning of analysis (in which we
include ODEs, PDEs, numerical and harmonic analysis); indeed, they
often obscure it. The good way of performing this type of calculus
is as a branch of algebra and it is desirable that students should be
more conversant with underlying principles in order that they should
better understand the origins and the use of software for symbolic
manipulation which is now replacing calculations done by hand. It
can also be argued that the repetition of such 'computing by hand'
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when the answers are readily available on a machine is simply a waste
of time.

One single example, well discussed and analysed, can be more instruc-
tional than a host of repetitive exercises. The time saved could be
used to familiarise students with notions fundamental to analysis (for
instance, vector fields and line integrals should be substituted for
repetitive exercises on first order differential equations) and/or for
learning some discrete mathematics.

Th¢ study on the influence of computers (ICMI Study 1) highlighted the
rapid development of discrete mathematics and proposed its introduction
into the curriculum. Recommendations to this effect have also been
made by an ad hoc committee of the American Mathematical Society (see
the paper by Martha Siegel). Jack van Lint succinctly presents in this
volume a stimulating vision of what discrete mathematics can mean and
how it can contribute to the solution of problems with very varied
origins. It is a mathematical field which has never had more than a
foothold in the curriculum yet van Lint's examples show how essential
such knowledge now is for engineers. It offers a new and interesting
way in which to approach certain algebraic topics and aspects of the
theory of numbers (in particular, permutation groups and finite
fields).

The introduction of discrete mathematics may seem quite alien to the
desire expressed by physicists, which we mentioned earlier, to see
greater emphasis given to geometry. In fact, geometry - if we under-
stand the term in its broad sense (see, for example, G. Chatelet's
contribution to the Selected Papers) - applies to the discrete as well
as the continuous. Its importance in physics, and in many other human
activities, proceeds, classically, from what physicists call symmetries
and mathematicians see as invariants under a group of transformatioms.
According to Chatelet - who makes reference to very remarkable texts by
Hamilton and Maxwell - fundamental geometric concepts express actions
rather than visions. Thus, vectors, arrows, diagrams express actions
as also do fibrations and parallel transports. The significance of
geometric intuition is that it represents thought in action. Whatever
the choice of geometric concepts to be taught, and this cannot be the
same in physics, engineering and architecture, the active aspect of
geometrical thought must be preserved.

So far as the choice of subjects to teach to physicists is concerned, in
particular analysis, the meeting clearly showed that merely enumerating
desirable topics leads nowhere and that, on the other hand, it is
possible to hold a constructive debate around fundamental questions:
disparate subjects or unifying concepts, ad hoc procedures or powerful
methods, fidelity to tradition or a modern approach. J.L. Bony openly
pleads for unifying concepts and powerful modern methods. The examples
he quotes are excellent, but they are only examples. The interest in
this approach is not to determine a particular choice, but to establish
a method by which one can choose.
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Without pretending to cover the whole spectrum of mathematics, we must,
nevertheless, make a special mention of probability. Probability comes
in, or should do so, at all four levels of mathematical need identified
by Pollak: everyday life, intelligent citizenship, professional work
and general culture. It is not reasonable that a student should leave
university - whatever his field of studies - without ever having
learned of probability.

4 It is a striking fact that non-mathematicians - even more
than most mathematicians - insist on the power and value of a mathe-
matical mode of thought. The idea is expressed equally forcefully by
biologists ("never mind what you teach: teach students to reason
well") and by engineers (see, for example, Aillaud, Pollak, Roubine).
Let us mention, however, the reservation expressed by Tonnelat:
'Mathematical thinking is a good servant, but a bad master'. The ways
of thinking acquired in the course of studies will, however, serve
strictly to determine an individual's ability to update his/her know-
ledge in the years of professional life. By this we mean a kind of
continuous retraining. Let us borrow an example from G. Aillaud: an
engineer trained in combinatorial arguments will easily adapt to
operations research, programming, expert systems, but he would be
totally blocked should he wish to move from combinatorics to numerical
analysis.

The consequence of this is that in the choice of subjects one must
think not only of the knowledge we wish our students to acquire, but
also of the modes of thought associated with those topics.

5 Again it is the experience of engineering departments which
particularly attracts our attention to the other side of the coin (cf.
Pollak, Siegel, Aillaud): the importance of knowledge itself, as
distinct from the ability to make use of it. In the course of his
professional life an engineer will rarely have to solve a mathematical
problem, but he will frequently have to recognise whether a question
confronting him is capable, or not, of being modelled, of being treated
mathematically. As in any other science, the important thing for him
is to know enough mathematics to be able to consult a mathematician
and to derive the most benefit from this.

The consequence of this is that in the choice of subjects to be taught
one must think not only of mathematical modes of thought, but of the
large range of knowledge required to permit a professional to know
what might be mathematically tractable.

6 Each professional activity demands a particular type of
mathematical culture (mathematical literacy) which enables one to be
an intelligent user of mathematics. This means an ability (i) to
read the mathematics used in the literature of one's profession, (ii)
to express oneself using mathematical concepts, (iii) to consult
references or competent mathematicians should the need arise. In
biology and the human sciences, for example, a need frequently ex-
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perienced is to be able to use mathematics as a language to express the
problems of the discipline. This concept of a mathematical culture or
a type of familiarity with mathematics peculiar to each discipline or
each profession seems to us better suited to present needs than that,
frequently used, of a knowledge of a 'fundamental' range of techniques.
Indeed, this knowledge of a range of basic techniques must be modified
as mathematical culture is acquired: they are only fundamental with
respect to a particular goal, and this end seems to us to be the mathe-
matical culture in itself, varied and variable in the same way as
activities and technologies.

Mathematical culture must unite these two distinct aspects: mathe-
matical modes of thought and a range of essential knowledge.

7 We have chosen to insist on what is changing and what, as
a consequence, forces us to modify curricula. In the same way that
societies, technologies, sciences, mathematics are not going to stop
changing, it would appear that, in the future, curricula will con-
stantly have to be modified. Will this upheaval in curriculum design
result in the developing countries being left permanently behind? This
anxiety was expressed at the Udine meeting and it must be given serious
consideration.

Even, and above all, in developing countries sclerosis of the curricu-
lum will prove a catastrophe. Everywhere, then, we must be on the
alert to track down what is ~ and what needs - changing. But that is
not to say that teaching programmes must change everywhere in the same
way. It would be absurd to attempt to teach new topics if there is no
one fitted to teach them. The choice of topics, at university level,
must be made by the teaching staff bearing in mind their levels of
competence, their fields of interest, and other circumstances peculiar
to their actual situatiom.

8 Let us end with the underlying idea which has provided
cohesion to this study. Much more than in the past, and more and more
so, thanks to the influence of computers, users need to understand
mathematics, to assimilate concepts rather than techniques. Let us
stress that this demand is expressed with particular force by engineers
who are especially sensitive to the effects of rapid technological
change. The rdle of teaching is to prepare students for change and,
on the whole, they are ready to recognise this aim as essential. Such
preparation for change is necessary whatever the student's future
professional activity will be. Thus there is no contradiction -
indeed quite the reverse — between a teaching devoted more to funda-
mentals and a teaching nearer to practice.

More fundamental, more practical, less technical; it seems to us that
these trends should obtain as a general rule for the teaching of mathe-
matics as a service subject.

III What is being done and could be done. With whom? How?
1 We have just written of technologies, of sciences, of

10
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subjects and of curricula. Yet at the meeting in Udine, the main part
of the discussion centred on another aspect: teaching and learning
methods, pedagogical experiences and problems, the relationships be-
tween teacher and students, and the social function of those engaged
in service teaching.

We shall consider in order:

- students, from those of the first year to those in continuous
education (2,3,4),

- desirable directions for developments (concerning, inter alia,
mathematical reasoning, rigour, theory and examples, and
modelling) (4-11),

- tools (computers, books, examinations) (12,13,14),

- relationships between teaching colleagues and those within
the mathematical community at large (15-21).

2 The entry of students to higher education deserves special
attention and Fred Simons' paper is devoted to this topic. Let us
abstract from it a few topics which he describes.

It is a remarkable and somewhat paradoxical fact that first-year
syllabi should be practically the same throughout the world for all
service-teaching to students of engineering and the physical sciences.
Yet students come to university with very different levels of attain-
ment. Some of them, ill-trained during their secondary schooling, find
themselves in difficulty on courses which their peers find accessible.
Two solutions have been mentioned: imposing more strictly a minimum
level of attainment on entry (a move which would often run against
national traditions and mores) and organising special entry programmes.
These last, 'booster', courses have given rise to some interesting
experiments, but there appears to have been little done in the way of
evaluation. In any case an essential effort is required to spell out
the prerequisites to first-year teaching by giving precise indications
on what subjects will be needed, when they will be used, and in what
context. In some places, such clarification of prerequisites, together
with the production of complementary documentation and the establish-
ment of booster programmes has already occurred, and been welcomed by
students and colleagues (see Shannon, Selected Papers). This is also

a useful way in which to help and influence secondary schools.

An example of another experiment in first-year teaching can be found

in Southampton. This is self-paced, individualised instruction (with
opportunities for consulting tutors) which is controlled by means of

tests taken at the end of each 'unit'.

Numerically - whether in terms of the number of students involved, the
number of lecturing hours, or the number of lecturers - the teaching
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of first-year service courses is of considerable significance. It is
at this level that the most crucial factors common to all service-
teaching commitments arise: student motivation and that of their
lecturers. It is at this level that an ill-adapted course can so
easily deprive students of an interest in mathematics and can conceal
from them the true flavour of, and creativity inherent in, the subject.
It is also at this stage that vocations can reveal themselves. This
is then a time when the need to exercise 'pedagogical care' (see
Martha Siegel) is uppermost. It is, clearly, a level at which con-
siderable pedagogical research is needed. One can assume that students
of mathematics enter university motivated to study the subject (al-
though how long that motivation will last will depend very much upon
the courses they are then given); but for those taking mathematics as
a service subject it is usually necessary to create/foster motivationm.
Yet it is at this stage that lecture rooms are at their most packed -
a time when the need for small classes and tutorial groups is at its
greatest. Where sequential courses are not set out from the start, it
is also the stage at which students will have the opportunity to opt
for different career directions - and this brings a corresponding need
for multivalent types of mathematics teaching. The first-year, too,
is often the time when mathematics is used as a sieve to separate out
the 'clever' from the 'dull' students. Assessment then becomes over-
important with the result that students devote their major intellec-
tual effort to cramming for the end-of-year examinations.

3 At the other end of the time-scale, continuous education
is now a fascinating field in which there are already many valuable
experiments to report, Yet it is still an insufficiently explored
area. The account of the development of continuous education in Bell
Laboratories is well worth studying (Pollak). Here, motivation is
clear. But the teaching approaches most suitable for adults with
considerable professional expertise will differ considerably from
what is traditional practice for university academics. Students must
be given the opportunity, and encouraged, to proceed at their own pace
(books, papers, software) and the teacher should assume (more even
than elsewhere) the rdle of expert and adviser. The provision of
materials suitable for use on continuous education programmes is an
urgent need.

4 The present position so far as motivation to study is
concerned is often described in gloomy tones:

(a) users frequently demand a fantastic quantity of techniques,
of tricks, while allowing mathematics only a ridiculously small frac-
tion of the students' time;

(b) students bother only with examinations and prefer to learn
and apply formulae rather than to develop their reasoning powers;

(c) students couldn't care less about what worried Fourier or
what prompted the development of Hilbert spaces - that will not help
them to pass the examination!
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Perhaps then we should work towards a situation in which mathematics
is taught so that:

(a) students should later be able to learn more mathematics by
themselves;

(b) students can see how, where and when to apply the mathe-
matics they know.

Let us consider the implications of this so far as the introduction of
concepts, mathematical reasoning, the rdle of rigour, the relationship
between theory and examples, modelling, and styles of teaching are
concerned.

5 The most general and important concepts (convergence,
linearity, differentiability, orthogonality) are also the most diffi-
cult to assimilate. Students must learn to recognise them in very
different situations. For instance, orthogonality - a geometrical
concept - will be encountered more often in analysis than in geometry.
At the same time, if they are to be used effectively, these concepts
should be understood in their simplest form. For example (cf. Bony),
differentiability at the level most suited to the majority of service
teaching means that there exists a good first order approximation.
Linearity is at the same time a fundamental geometric concept (linear
spaces, vectors) and the study at the first order, of all that is
differentiable (linear mappings). The notion of convergence is one
that could be illustrated and clarified by means of a computer (cal-
culations, graphics). It is a notion often obscured by recipes and
repetitive exercises which only draw upon calculating techniques. Far
better, then, that the student should be aware of it in all its riches
(speed of convergence, various examples of convergence drawn from
analysis and probability, the lack of convergence of certain natural
series - Taylor or Fourier). But it is even more important that the
student should know thoroughly certain simple and general facts (for
example, that, in a convenient, well-defined sense all Fourier series
are convergent (cf. Bony)).

6 Mathematical reasoning is a valuable part of learning. It
is in mathematics, and in mathematics alone, that students can encount-
er a formalised hypothetico—deductive system and come to understand the
role of hypotheses, deductions, refutation through counter-examples,
proofs by contradiction, ... : in brief, formal logic in action. But
the logical aspect of mathematical reasoning must not obscure the
others: geometrical intuition, a search for good geometrical represen-
tation, analogies, generalisations, the study of particular cases.
(Polya's books, inspired by teaching engineering students at Zurich
Polytechnic and also architects and chemists, are a source of most
interesting suggestions on this topic.)

7 Rigour is necessary. 'Under very general conditions, such
a conclusion can be drawn" is not a mathematical statement, because
there is no means of verifying that 'the very general conditions' are
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satisfied. In mathematics, rigour of language is a guarantee of rigour
of thought. It is therefore crucial that students should learn to
detect and criticise incorrect formulations and develop the ability to
express themselves correctly, both orally and in writing. It is also
crucial that mathematical rigour should work effectively for them and
that they should appreciate the difference between rigour and pedantry.
In fact, the most effective rigour is often exhibited through the most
simple and elegant forms of expression.

Proofs are not indispensable in service teaching. Yet they are welcome
if they throw light on concepts or stimulate the students' interest.

Certain teaching modules can be organised to start from the reading of
books and papers (see, for example, the paper by Clements). To train
students to read texts critically, to exercise control over their own
means of expression, to develop rigour and elegance, calls for atten-
tion and time in amounts which are not usually available to the
teacher: seeing students individually, getting them to talk mathe-
matics, reading and correcting their writings. Teaching 'through
example' is necessary; it is not sufficient.

8 Let us insist again on the rdle of rigour in the choice of
theorems to state. Statements must, as far as possible, be rigorous
and simple. For instance, the following statements are excellent if
one places them in the correct context:

all Fourier series are convergent (context: L? or
distributions);

all functions integrable on R tend to zero at infinity
(context: distributions);

all functions from R to IR are Lebesgue measurable (context:
a model of set theory excluding the axiom of choice);

any linear functional on the space C(R) (or D(R) or
L?2 (R)) 1is continuous (same context).

The choice of correct statements necessitates close cooperation between
teachers and mathematics researchers in all areas, and permanent
research into what can simplify life for students and for users of
mathematics.

9 The choice of examples/applications and the most appro-
priate times for giving them is a matter of considerable pedagogical
delicacy. To motivate students, to make them appreciate the interest
and value of a particular theory, there is nothing like good examples
drawn from their major field of study.

Should one begin with the examples or with the theory? Bottom up or
top down? There is no universal answer. The meeting at Udine showed
that each approach could be justified. An Australian colleague
produced two examples: one from operations research in which it
seemed appropriate to begin with an example and then to allow the
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theory progressively to emerge, a second from statistics where it
seemed more effective to teach the theory first. In the former case
the students were helped to unify and harmonise their exploration of
other examples; in the latter the students became equipped to consider
a statistics question as a real problem. The choice is likely to
depend upon the level at which the student is. At the end of a period
of study, students may well be acquainted with a number of examples and
it is good to have a varied choice available so that the theory is
demonstrated in all its power. On the other hand, at the beginning of
the period of study, examples must be very 81gn1f1cant and fully
developed.

The combination of the two approaches can, as Murakami shows in his
paper, be an excellent pedagogical device.

10 The transfer of mathematics to other disciplines generally
necessitates a knowledge of mathematical theories and of problems to
be considered, and an ability to construct models, allowing one to
transform problems posed in the major discipline into ones which can
be dealt with by the mathematician. The teaching of modelling is,
therefore, inseparable from the consideration of significant examples.
It can begin, in an elementary way, from the first years at university.
It is, however, in the course of the last years of study - if mathe-
maticians still have a part to play at that stage - that advanced
modelling can exert its greatest influence and be of most interest:
the treatment of real problems arising in laboratories, liaising with
the world of production and services - both industrial and non-
industrial.

11 Whatever the subjects taught, one must endeavour to give
students a feeling for the beauty of mathematics at the same time as
one is demonstrating its usefulness. That feeling may be aroused by
a detail in a lecture, a well-chosen problem, an elegant proof, or a
neat enunciation of a result. It can be stimulated if the students
see the experimental and heuristical character of discovery in mathe-
matics. It can also develop if students see the whole spectrum of
mathematics as a living science. Brief mentions of its history -
ancient and contemporary - of current developments, of the links with
philosophy and music as well as those with physics or information
technology, may, if put forward at the appropriate time, stimulate the
interest of non-mathematics-specialist students.

It is good that students should appreciate for themselves the particu-
lar way in which mathematical knowledge and understanding is acquired.

In partlcular, it is interesting to consider the respective rdles of a
'proof' in mathematics and an experiment in physics.

12 Computers and informatics present us with new means of
teaching. They change the relationship between teacher and student,
by making the student at the same time more active, more free, more
disposed to experiment, and the teacher more indispensable as the
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expert (in mathematics! - not necessarily in the handling of hardware
and software), guide and counsellor. These new relationships, together
with the new possibilities (graphics, self-evaluation, computer marked
assignments, computer-assisted learning) and the new problems which
arise (creation of software, commercialisation, cultural, social and
economic consequences) are analysed more fully in the Strasbourg study.

Without going back over, what is now becoming, old ground, let us
stress again the importance of particular questions which arise in
connection with service teaching. These questions are addressed in
several of the papers which follow. Experiments in the use of symbolic
manipulation are mentioned by Clements and by Hodgson and Muller
(Selected Papers). Let us also mention the need at all levels of
teaching for the provision of software correlated with books and
course-notes.

13 The importance of reading has been stressed. Students must
become capable of reading the kind of mathematics to be found in pub-
lications relating to their major disciplines: such readings may,
indeed, be used as a source of motivation for their study. In some
languages (e.g. French, German, English) mathematical literature from
the early eighteenth century onwards provides a considerable resource
of interesting readings. This is now beginning to be exploited by
authors of books on service mathematics who reprint long extracts from

classical works (e.g. 20 pages of Laplace in a recent book Probabilités

pour l'ingénieur).

Yet reference books are still lacking, and so are presentations
intended for a public which, though informed, does not have a special-
ist knowledge of mathematics. (G. Aillaud pleads the case of those
engineers to whom mathematicians do not supply the means for embarking
on continuous self-education.)

14 Unless new approaches are sought, examination systems are
likely to block the evolution of teaching and the adoption of new
methods. Yet used carefully, they may present a tool for the trans-
formation of learning and teaching. For example, it is not difficult
to imagine questions needing no technical virtuosity but which test,
and so encourage, assimilation of concepts and the acquisition of a
certain critical faculty (such questions can sometimes have the advan-
tage of being presentable in a multiple-choice format). Yet thinking
along these lines has only just begun.

Modelling courses can be assessed in a natural (but time-consuming)
way (see Clements).

15 Most of those taking part in the meeting at Udine were
mathematicians. There were also engineers (Ezratty, Roubine), a
physicist (Lauginie), and a biologist (Peter Kelly, the outgoing
President of ICSU-CTS). Who teaches service mathematics courses?
Who should teach them? These were two of the questions asked in the

16
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preliminary discussion document. A few points can now be made towards
supplying answers. Let us consider successively three particular
questions: the specific rdle of the major discipline and of those
teaching it, the pedagogical importance and the necessity for the
recognition - in career terms - of the work of those mathematicians
engaged in service teaching, and finally the rdle in this field of the
mathematical community as a whole.

16 Physics is inconceivable without mathematics and there is,
of necessity, a considerable amount of mathematics in physics courses.
It can be envisaged - indeed it has been tried - that physicists should
be entrusted with the teaching of all the mathematics needed, and that
they should control the pace at which mathematical notions are intro-
duced. In any case, physics is a mine of topics and of illustrations
which can illumine mathematics courses. For example, one of the best
introductions to a course on Fourier analysis is to be found in the
Berkeley physics course (Waves, p.91): press the sustaining pedal on
a piano, say 'oh' in the direction of the strings and listen for the
response 'ohh' from the strings vibrating on your voice's wavelength.
Your voice is analysed by the strings, then synthesised. The Fourier
transform - and in all its contemporary guises — is no more, no less,
than the theory behind this harmonic analysis and synthesis. When
mathematics courses are entrusted to a mathematician, it is extremely
beneficial if physicists can lead example/problem classes; there must
be liaison between physicists and mathematicians to ensure that both
points of view are properly represented. The mathematician's contribu-
tion (as seen by Pierre Lauginie) is to simplify what his physics
colleagues might have done; by so doing, the former's réle can be more
readily appreciated and recognised (see, for example, Bony's paper).

17 Teaching engineers is not altogether dissimilar to teaching
physicists. In this volume complementary points of view on this impor-
tant question can be found (Murakami, Pollak, Roubine). Let us, how-
ever, stress another aspect. Engineers form a vast pedagogical
resource because of their professional expertise and the wide range of
problems of which they have knowledge; this goes far beyond the mere
teaching of engineers.

18 Mathematics for biologists seems somewhat different. Peter
Kelly chose to classify the interactions between mathematics and
biology in the following way:

- integration (example, quantitative genetics): mathematics is
an integral part of the biological concept and must be taught,
at the same time, by the biologist.

- disjunction (example, models for population growth): mathematics
may be presented in an autonomous way in an introductory course.

-~ instrumental relationships (example, data analysis): mathematical
techniques only constitute auxiliaries to the biology course:

17
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they must be taught in separate units at the time when they are
needed in biology.

- conceptual relationships: it may be that mathematics gives rise
to biological concepts or to a better understanding of biology
(probabilities for the theory of evolution, set theory for the
construction of taxonomies); this justifies the teaching by
mathematicians of mathematics which is likely to prove a future
resource for biologists.

At a practical level, it is worth making a few remarks about the remark-
able success of a few instances of integrated teaching. Here is one
example. At the Agronomics Institute of Paris-Grignon, a course on the
theory of surveys and data collection has been jointly taught for sev-
eral years by a statistician and an economist. The economist presented
the successive steps of a sample survey, set up by professionals, on
the economy of a wine-producing region and the statistician highlighted
the general principles of the theory underlying sampling. The connec-
tion between the examples and the general theory was made clear to
students in the open, on-going and often animated debate between the
two teachers.

19 The greater the distance between mathematics and the major
discipline, the more the mathematician must listen to his colleagues'
concerns. Team work, with representatives from the major discipline,
provides a serious guarantee and sometimes provides the only oppor-
tunity for mathematicians to contribute to the teaching. A good
example of collaboration with architects on an advanced course on
architecture was mentioned by Shannon.

20 It can be seen, therefore, that pedagogically (always) and
scientifically (often), service teaching when it is wholly or partly
undertaken by mathematicians demands more inventiveness and effort than
does teaching to future mathematicians or teachers of mathematics.
Those involved in it should feel that they are doing something immens-
ely valuable. Many do put into it the best of themselves - as teachers
and also, as we have hinted several times, as researchers. And yet,
within universities, work in this field receives very little considera-
tion, particularly where promotion is concerned. The Udine meeting
provided a platform for making a demand in this respect: that
university authorities and the mathematics community in general should
give greater recognition to the services rendered by those who
specifically devote themselves to service teaching.

21 Some colleagues devote themselves entirely to this kind of
teaching. More often than not, though, service teaching is shared out
amongst the mathematicians in any institution, possibly with the excep-
tion of those who appear to be the 'purest'. Now if the present study
can claim to have reached any conclusion, it is that even the 'purest'
mathematics (let us say axiomatic set theory - which we have still had
cause to mention) may still be very useful within service teaching.
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Too often, the image mathematicians have of 'applied mathematics' is
that which prevailed in the nineteenth century: special areas in
analysis (in its wider sense), with possibly a dash of statistics.
Today, geometers, number theorists, algebraists all come face to face
with important applications. In particular, the need to teach discrete
mathematics to millions of students demands the co-operation of mathe-
maticians specialising in algebra, algebraic geometry, number theory
and combinatorics. Let us once again turn to Polya, an analyst by
training. His work leading to Polya's Theorem on combinatorial enumer-
ation arose from a problem in chemistry - listing the isomeric forms of
aliphatic alcohols. Thus being involved in service teaching can prove
stimulating even at the research level and no mathematician ought to
stand apart from this type of teaching.

22 Let us end by recalling the example of Nobel Prizes awarded
to mathematicians working in economics or chemistry. Our study is
inspired by the enormous 'service' which mathematicians are able to
provide to facilitate the progress of science and mankind. Yet
'service' here should not be interpreted in the sense of subordination.
On the contrary, the type of service required nowadays demands intimate
cooperation between mathematicians, teachers and users. Such a partner-
ship, for which our study calls, would do much to ensure future
advances in education as well as in science.



WHAT MATHEMATICS SHOULD BE TAUGHT TO STUDENTS
IN PHYSICAL SCIENCES, ENGINEERING ... ?

J.-M. Bony
Centre de Mathemathues, Ecole Polytechnique,
91 128 Palaiseau Cédex, France.

I shall try to express a few ideas, related to what could
be the beginning of an answer to that question. A first attempt is to
make a list of domains of mathematics whose teaching would be useful.
One obtains a beautiful catalogue, with the following interesting
property: showing it to anybody, you obtain simultaneously the two
following answers: a) that is far too much, b) something (very
important) is lacking.

One has to make choices, and I shall concentrate on a few related
subjects: the distinction between scattered and unifying topics, the

question of teaching modern mathematics, the choice of the level of
the teaching.

1 DOMAINS OF MATHEMATICS THAT SHOULD/COULD BE TAUGHT
In some sense, 1t 1s an easy question, if you do not choose
between should and could, and if you keep the '"domains" sufficiently
vague. You can ask users what they use, what kind of mathematics they
find important or useful. The intersection of the answers gives a very
small list, while the union of the answers gives something like the
following catalogue:

a) (at an elementary level): calculus including ordinary differential
equations, linear algebra, probability, statistics, discrete mathe-
matics, some geometry.

b) (further): complex variables, Fourier, Laplace, convolution,
Lebesgue integral, distribution theory. Partial differential equations.
Hilbert spaces. Tensor calculus. Group theory. Special functions.
Geometry. Calculus of variations. Dynamical systems, fractals, chaos.
Stochastic process. Numerical analysis. Non linear phenomena, and so
on ... (of course, computer science is outside the scope of this talk).

The name of a domain can, however, have quite different meanings: the
word ''geometry'" can correspond, for instance to:a) that elementary
geometry (in the 3 dimensional space) which used to be known by students
entering university, but which is not known nowadays, b) the concepts

of algebraic and differential geometry arising in e1ast1c1ty, general
relat1v1ty, (string theory!) , c¢) the concepts arising in engineering

in drawing assisted by computers (approximations of surfaces by graphs
of splines ...), etc.
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It is clear that a high level course on all these subjects would be
fantastic but is completely unrealizable. The constraints of time are
extremely strong, as well as the constraints due to the level and the
motivation of students.

How to choose between these domains? For each of them, how to decide
which precise topics should be taught, and at what level? The answer
will certainly depend on the category of students and on individuals.
But perhaps it is possible to express some general ideas on this point.

2 SCATTERED TOPICS, OR UNIFIED AND UNIFYING ONES
I do not think that the answer to "what” is '"a little bit
of each domain of the catalogue'. Actually, a course in physics
contains always some mathematics, and there is always in the curriculum
of each student at least one course of mathematics.

I think that a precise mathematical topic, arising just in one chapter
of physics is well placed in this chapter. It is linked to its
physical significance and this would be lost without any profit if it
were transferred to a 'patchwork style" course of mathematics.

For instance, it is meaningful to make a course of mathematics studying
special functions in relation to group theory and/or Hilbert spaces
and/or differential equations. (This would be a high level course!)
But I do not see the usefulness to include in a course of mathematics
the study of such special functions or of a particular family.

On the contrary, I would like to give an example of what I call a
unifying concept, the existence of which is an important justification
for the existence of a specific course of mathematics.

It is well known that a linear operator which commutes with transla-
tions and is continuous (in a very weak sense) is a convolution opera-
tor. This means that, for a physical system considered as a 'black
box", transforming a function i(t) (the input) into a function o(t)
(the output), if o depends linearly on i , and if to i(t-T) (the
same input T hours later) corresponds o(t-T) (the same output, T
hours later) then one has o = k + i . Moreover, k is the output
corresponding to the input ¢§ (Dirac measure) and the output corres-

. . A iwt AL .
ponding to emut is k(w)elw » where k 1is the Fourier transform

of k .

This result, which is also valid for functions of space or of space-
time variables occurs in every branch of physics. It explains why
convolution is so universal in physics. Each time I taught it to
students, I got a strong reaction of interest: they had some knowledge
of this, scattered in different branches of physics, and mathematics
was giving a unifying explanation.

Of course it is not only this particular result, but the whole domain:
Fourier, Laplace .... , whose unifying character in physics is obvious.

21
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If one has to choose what should be the content of a course in
mathematics, I think that priority should be given-to that kind of
unifying domains.

3 MODERN OR NOT
Should one teach recent mathematics or is it sufficient to
teach what was taught 50 years ago? This is, of course, a key point
before one goes on to ask: who teaches?

A Life has changed
This is the main reason why our teaching should change.
An important example is the modifications that are/should be induced
in our teaching of calculus or linear algebra by the existence of
computers.,

Numerical methods have to be taught for computing
integrals, solutions of 0.D.E.s, of linear systems ... .

Some topics, traditionally taught, are becoming less
important, and the time devoted to them should
certainly be reduced: computations of integrals via
rational fractions, determinants and their use for
solving linear equations, ... .

The importance of other topics, leading to some
developments of calculus for instance, is increasing:
estimation of error, speed of convergence, well or
badly conditioned matrices, ... .

Some concepts should be introduced, at least by
examples, to show what could be or could not be
asked of a computer: for instance behaviour for
large time and more generally qualitative properties
of solutions of 0.D.E.s.

The concept of algorithm is becoming central, and
many classical proofs by induction will gain if
expressed in terms of the existence of an algorithm.

The concept of convergence, the importance of which
does not decrease, will gain if it is closely
related to degree of approximation, and also to
stability.

Some time will be gained, some time will be used in this transformation
of our teaching. Calculus (for instance) will remain calculus, but we
shall have to change its teaching to retain its usefulness.

B Mathematics has changed, and provides new possibilities
This 1s evident, and important, for new branches of
mathematics, but I think it is also important for "old" subjects.
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I would like to give a (bad) personal experience. I was teaching
students in physical sciences, in their 2nd year at university, on
the separation of variables for solving some partial differential
equations such as vibrating strings. Solutions are given as a
series of particular solutions, the coefficients of which are given
by those of the Fourier series of the initial data.

I discovered that it was not possible to give any problem where I
could ask students to prove that the series is actually a solution.

I had just taught them theorems on the derivative of a limit when the
derivatives converge uniformly, and, for those well-known functions
(piecewise linear, or p. quadratic, or p. exponential) whose

Fourier coefficients can be computed by students, the uniform con-
vergence of second derivatives never happens.

What I was doing is clear: I was teaching 19th century mathematics
because it is the tradition to do so, instead of teaching the cor-
responding 20th century concepts which are simpler and more powerful.
Any limit (in a very weak sense) of solutions of a linear PDE is a
solution, if one introduces the concept of weak solution (i.e.
solution in the sense of distribution theory, but it is not necessary
to pronounce the word: the definition is quite simple). The concept
of uniform convergence for functions, and the related theorems on
Riemann integral, are certainly over-valued in our teaching, while
the simpler concept of weak limit is usually reserved for higher
studies.

Is it so serious? I think so: if you require unnecessary restrictions
for results which are always true in practice, students and users will
think (and they will be right!) that mathematical rigour is nothing
but a constraint, and that they need only a cook book made with
formulas arising in mathematical theorems.

C Efficiency, rigour, efficiency of rigour
It is clear that, in service mathematics, it is not
possible to give proofs of all statements. This should not be seen as
a constraint due to the time or to the level of students, but as an
advantage. One has just to pay attention to the simplicity or the
strength of a theorem, not to the difficulty of its proof.

Should we give only correct statements? Should we make a clear
distinction between the case when we are giving a (rigorous) proof,
and the case when we are suggesting by other means (examples,
particular cases, physical meaning ...) that a statement is true?
Should we require (simple but) correct proofs of students? I think
so, but only if our teaching shows that this rigour is efficient.
Some examples:

a) Physicists think that the Fourier series of any periodic function
f converges. They are right, and we should give a theorem saying
that, the simplest being that it is true for the weak convergence.
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After, we can examine what happens more accurately (Gibbs phenomenon,

ced)

b) If Curl(X) =0, and if the topology is 0.K., then X 1is a
gradient. The restriction in the statement is an important part of its
efficiency. Otherwise, the magnetic field created by an electric wire
would have a scalar potential, which would be catastrophic for electric
engines.

c) The theory of distributions not only provides mathematical concepts
corresponding to a lot of physical ones, but it gives the simplest, the
more efficient theorems, as far as linear analysis is concerned. Many
statements are true without any conditions, and when an assumption is
required, it is a serious one.

d) The restrictions in Lebesgue theorems on taking limits or deriva-
tives under the sign of integration are important parts of their
efficiency: when the assumptions are not satisfied, it is not rare at
all that the conclusion is false. In this respect, the corresponding
theorems for Riemann integrals do not give a good idea of the efficiency
of mathematical rigour.

e) A provocation: who has any objection about teaching, at the most
elementary level, the principles of Lebesgue integration, i.e.
(admitting that any subset of R is measurable, which is valid in a
coherent model of set theory excluding the axiom of choice) giving the
following statements:

- any non negative function has an integral If(x)dx < © , and the
usual relations with < and + are valid.

. .. . + - .. .
- a function f is integrable if f and f  Thave finite integrals,
-  the Lebesgue theorems about limits are true?

After that, it is easy to have, for continuous functions, the relations
with primitives and to show that Riemann sums are a (not very efficient)
way of computing approximationms.

The gain in efficiency would be very important, and if it is true that
proving Riemann theory requires less than proving Lebesgue theory, I
think that accepting Lebesgue theory requires less than accepting
Riemann theory.

4 WHICH LEVEL?

Having chosen to teach a domain of mathematics, you can do
this at a more or less elementary level. This choice should be, of
course, balanced with the constraints of time and of the level of
students. But it should also be balanced with your precise purpose:
what is the gain in efficiency, in depth of understanding for, say,
physics or engineering? I shall start with a well known example.

24
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Example: differentials in physics

Ist Level Colleagues in physics or chemistry usually want
at the beginning of the 1st year at university a teaching of differen-
tials. Fortunately, they are usually quite satisfied with a teaching
of partial derivatives, and a statement of 1st order Taylor expansion

(*)  f(uthu, v+Av) - f(u,v) = f& Au + f; Av + remainder.

It can be said then that the differential notation in physics is just
a notation for small variations, when remainders can be neglected.

However, there is an important point on relations between mathematics
and physics: physicists consider variable physical quantities, while
mathematicians consider (and define partial derivatives for) functioms.
For instance, from Ohm's Laws P = VI , P = RI? , one is not allowed

to deduce aP/Z)I =V =2RI . And, even with notations used in thermo-

dynamics, one should not try to write down (dP/3I) from

V=Cst,R=Cst

a formula like P = Vl/2 R1/2 13/2 . Writing down partial derivatives
with the excellent thermodynamic notations (say (8P/31)R=Cst)
requires 2 conditions: a) R and I can vary independently,

b) P 1is determined by R and I .

2nd Level Mathematics have quite a good definition for
the differential of a function defined on an open set of a vector
(or affine) space. It is the linear function which is tangent to the
given one. They can be tempted to teach that to students in physics.
The result is usually not very good: students cannot see the relation
with differentials as used in physics.

My next provocation will be the following: students are right.
Teachlng that and only that is not useful and is confusing. For
instance when writing down dP = 2RIdI + I%dR is it possible to
answer to the 2 following questions: a) where is the function?,
b) where is the vector (or affine) space?

There is just one case where this could be useful: physical quantities
defined in the space (or the space-time) can be naturally considered
as functions on a vector space. However, this space is always
equipped with a Euclidean (or Minkowski) structure, and the concept of
gradient (which can and should be taught at the 1st level) contains
the same information.

3rd Level That level (which requires the 2nd one) is the
good one. Assume that the set S of possible states of your physical
system is equlpped with the structure of a differential manifold (the
dimension is the number of degrees of freedom). Then a variable
physical quantity can be considered as a function on S . A relation
P(s) = R(s)I(s)? is an equality of functions on S , and dP at
some point s is a linear form on the tangent space to S at s
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(the space of infinitesimal variations of the system), and so on ...
Now the mathematical and physical meanings of differentials fit
together, and everything is well justified.

This rather long example is, I hope, instructive.

- If it is true globally that high level, elaborated, modern
mathematics is more efficient for understanding physics,
nothing is automatic.

-  An unquestionable progress in mathematical understanding
(the 2nd level here) may be of low interest for service
mathematics.

- Thinking about modelling, about how concepts, notationms,
results are used outside mathematics is necessary, and
should be an important part of the teaching.

- Such an analysis does not give a unique answer. It is
quite reasonable to teach the lst level, with no mathe-
matical definition of differentials and just information
on their physical use, and it is quite reasonable to teach
the 3rd one (simplified as far as one can) if one has time
for it.

- The same kind of analysis is probably useful in many parts
of mathematics. For instance, it is certainly valuable to
teach Kolmogorov axiomatic probability theory if it is used
to model a serious physical situation, Brownian motion for
instance. Is it worth it if you have just applications to
coins, urns, cards, dice (things which are already symbolised,
which are already abstract concepts, and which may give a
wrong idea of modelling)? At a more elementary level, is it
not better to teach only statistics?

I was supposed to answer the question "What should be taught", and my
conclusion will be that I have no answer. There are so many domains
of mathematics whose teaching would be useful, and there are so many
constraints, However, this should not be an excuse for perpetrating
traditional teaching.

Life, and mathematics, and intervention of mathematics in life have

changed. The teaching of more modern mathematics, of domains which

were not taught before, should be considered very seriously, not for
pleasure, but for efficiency.

There is just one thing of which I am sure. It is the absolute
necessity of a collaboration, at the highest possible level, between
mathematicians and users. I have had an excellent experience, at
Orsay University, of teaching a course of mathematics to students in
physics, while exercises and problems were done by physicists. Such
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teaching demands a knowledge of recent mathematics and precisely how
mathematical concepts and methods were, are and could be used in other
sciences or techniques. My opinion is that discussing together, at
the research level, is the key to the problem.



MATHEMATICS AS A SERVICE SUBJECT - WHY?

H. 0. Polliak
40 Edgewcod Road
Summit. NJ 07901 USA

My assignment is toc examine the guestion of why we
teach mathematics as a service subject. This question is of course
also very much in evidence in many other papers at this meeting. It
will be studied in the present paper from the point of view of this
particular author, who spent a 3S5-year career as a mathematician in
industry, both as a mathematical researcher and as leader of a group
engaged in research in the mathematical sciences. We begin with some
anecdotes, examples of incidents in the old Bell Telephone Laboratories
before 1984, which have helped toc shape my thoughts about mathematics
service teaching. These examples of formative experiences will be
foellowed by some of their implications for mathematics education, and
by some broader observations about the telecommunications industry and
ite relations to the mathematical sciences. Finally. we shall include
some thoughts on the "why" of teaching mathematics in a larger sense.

Incidents

We begin, as we salds with some incidents during my career
which have helped to shape and to modulate my ideas on the purposes of
mathematics as a service subject.

1 I was a member of a committee considering the promotion of
a young man who served in the role of a technical associate in the
area responsible for semi-conductor device development. One of the
exhibits which formed the basis of the promotion reguest was an
internal memorandum he had written on the removal of impurities in a
semi-conductor material. It was an interesting piece of experimental
worky but near the end of the write-up, he mistakenly divided by
10%%7 instead of multiplying by i1t, and sc arrived at 3 impurity
atoms per cc rather than 3¥10%*14, Neither he nor the people above
him in our chain of command noticed this totally wireascnable impurity
level at the conclusion of the memorandum.

2 An engineer came to see me, and asked me if I could sum
the fellowing series for him (or cne very much like it, I am not sure)d:

{1/n + [1/n%%2 + 3/nin—1)1%x%ls%n,
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According to my experience, this was a very unlikely sum to have come
from a real-world problems and I naturally asked how it arcse. I was
told that it came from analyzing a queuing preblem. If p(n) represents
the probability of n customers in the gueue. the recursion which the
engineer derived for pin) was

pin+tl) - 2pin)/n - 3pin-1)/nin-1) = 0.

He had learned a method at the university for sclving difference
equations: Form a particular polynomial (in this case quadratic)

using the ccefficients in the recursiony find the two sclutions of this
guadratic, form sums of n'th powers of these scluticns, and they are the
general solution of the recursion equaticn. He needed to sum the series
in erder to find constants to satisfy the initial conditions.

He had memocrized this methed - and I was surprised that he
had even heard of it - but he had nc idea why and how it worked. Thus
he did nct know that it applied only to recursions with constant
coefficients - while his equaticn had coefficients depending on "n".

8o he was propesing to apply a method which had nothing to do with the
problems and this would lead to nonsense. Then, if I hadn’t stopped
hims he would have summed the series on the computer - it converges very
rapidly. As it happens, by multiplying the recursion equation by nly
you can convert it inte an equation with constant coefficients. so that
it can in fact be sclved analytically. But that is not the main point
of this anecdcte.

3 When Bell Laboratories first acquired a large computer, it
was under control of the Mathematics Research Department, which had the
responsibility for providing this free service in the company. In order
to help assure that the computer was being used wisely, we set up a
committee in the department which screened all large and a sample of
small problems. I was a member of this committee, and saw a lot of
interesting uses. One example was an engineer summing a double series.
It had only one fault: It was slowly divergent. Luckily we caught and
stopped that one.

4 An engineer came to one of the mathematiciarms with a
mathematical proof of an interesting new result. The mathematician
rather guickly showed him a counter example to the proposed thecrem.

The engineer said "Oh, thank you! That’s teoo bad. I am going to have
to find a new procof.”

S Every year, the company did performance reviews of its
employees in order to judge the gquality of everyene’s work. The usual
experience was that it was very easy to agree on the top performers -~
the stare - and on the poorest performers, ones who had to show definite
improvement during the next vear or be in danger of being asked to
leave. It was the large group in the middle, these not good encugh to
be stars but definitely an asset to the work, who were difficult to sort
out. One year, a coclleague of mine in the middle management ranks had a
great idea. He established ten characteristic criteria of performance,
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like guality of work. gquantity of work, originality. cooperation, and
keeping to the schedules rated everyone from 1 toc 10 on each performance
characteristic, and added the ten number for each individual. He called
me on the phone in great distress: This clearly identified the stars
and the poor performers, but all the ones in the middle came ocut with
scores between 45 and 55, and he knew that he could not trust the
specific numbers to represent true differences in performance. What
should he do? I had the pleasure of telling him about the central limit
theorems and the inevitability of his experience. One might even argue
that some of the items., like quantity and guality of work, might tend

to have negative correlations so that the effect would be worse than

for independents identically distributed random variables.

& In my early days with the company, I would get a visit every
yvear or two from some engineer who was trying to approximate a
discontinuous pericdic function with a Fourier Series. He would find
this strange little overshoot near the discontinuity, decide to take
more terms, and make the overshoot narrcwer but just as big. What's
wrong? Gibbs Fhenomencn, which at that time was not as familiar to the
engineers as it is today.

7 This brings me to the major internal education program which
Bell Laboratories had established in the late 1940°s for all incoming
engineers without a master’s degree. They spent three years: on the
average half-time, learning linear algebra, complex variables, Fourier
Series and Fourier and Laplace Transforms, probability theory,
statistics, semi-conducter physicss and a number of cother tepics which
at that time were not part of the regular university education of
electrical and mechanical engineers. We taught the program curselves
internally within Bell Laborateories until the late 1950°s. when some of
the teaching was taken cver by faculty from New Yerk University. A few
years later, these and related subjects had become part of the graduate
and then the undergraduate program for engineers. The program was
changed and we sent the incoming engineers to universities to aobtain a
master’s degree in engineering or computer science. The internal
education program became a continuing educaticn system for essentially
all employees - what you learned in school is never encugh for a career
in research and development. This existe up to the present time, with
probably its major emphasis on computers.

8 One of the categories of employees in Bell Laboratories was
that of technical asscciatess who were hired with degrees from two-year
technical institutes and typically participated in laboratory or
computer experimentaticn. A major institute from which we hired many of
these people decided towards the end of the 1960°s to expand from a
two—year to a four—year programi for one thing. the government support
for the education of veterans made this an attractive alternative. They
took the existing two-year program, with its courses in electronics,
circuits. etc., and added a second two years of partly fundamentals like
calculus, basic physics, etc. Our opinion in Bell Laboratories was that
this educaticon was now in the wrong order, that the applications
preceded the fundamentals, and we decided not to interview graduates of
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this four-year program. After all, in a sense they competed with
regular four-year engineerss who had had their education in the RIGHT
order. The technical institute decided, not urmaturally, that if we
refused to interview the four-year graduates, they would forbid us from
coming to the school and interviewing two-year graduates as well! The
impasse was broken by the 1973 recession, during which we did no hiring
at all. By the time we were hiring again, the educaticonal program had
improved. Incidentally, I am no lenger sure that cur position at that
time was indeed correct. Wouldn't the applied material make pretty good
motivation for the courses in fundamentals?

7 Early in 1946, Bell Laboratories decided to broaden its
hiring pattern by locking noct only for engineers {(primarily electricall,
but alsc for mathematics majors who could become computer experts. We
had been hiring the engineers for many years and been giving them
additicnal education - as we discussed above:! row we would alsoc hire
mathematics majors and educate them further towards computer science,
and towards engineering. Our biggest problem was to be sure that very
bright mathematics majors, students who had grade point averages above
3.59/4 and had almost all A°s in their mathematics courses, could
actually apply their mathematics to the real world. It is not possible
to be an A student in engineering and have no feeling for real world
problems, for applications to the real world are part and parcel of an
engineering education. But it IS possible to be a top student in
mathematics and still have no experience ins or talent for, applying the
mathematics to any cther field. We looked for advanced courses in
science or econocmics or computer science as evidence: we looked at
summer jobs and hobbiesi in shorts at anything that might indicate an
ability to apply mathematics. This was very necessary.

A View from One Emplover

What have I learned from experiences such as these ocver the
last 35 yeare? What do empleoyers need from the mathematical education
of their staffs? At the elementary level, we particularly need the
following: The ability to set up the right problems to have a good idea
how big the answer should be, and to get the right answer by ANY
available means whatscever - mentally, calculator, paper-—and-pencil.
computer, whatever. These abilities are needed of all emplovees from
secondary scheol graduates on up. At the more advanced technical
levels, we need employees who know that there is a large variety of
forms of mathematical thinking, and what these varicus forms can do.
Besides analytic, algebraic: and gecmetric thinking, there is, for
examples data-driven thinkings in which you must draw conclusicons and
plan action on the basis of data, some of which are likely to be wWirong .
There is probabilistic thinkings where the information is not
deterministic but stochastic. There is algorithmic thinking: where a
key point is evelution of an efficient procedure, probably on the
computer. There is the thinking which covers the areas of planning,
cptimization, cperaticns research, in which you consider defining an
objective, alternative ways of reaching it, the sense in which one
methed is better than ancther, and what might be the best in the sense
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of "best" which you have chosen. There is the combinatorial or graph
theoretic or number thecoretic way of thinking - which we tend to call
"discrete” mathematice nocwadays. Above all, we need the knowledge that
mathematical thinking, analytic, structural, guantitative. systematic
thoughts can be applied to the real world and give valuable insights -
in other words, that mathematical medelling is possible and can be
successful.

It is alsc necessary to understand the mathematics! There
is a commen caricature of an engineer as a person who leoks up a foermuls
in a handbook. substitutes numbers, multiplies the answer by 10 (the
"gsafety” factor), and then builds it. Why does such a person have to
understand anything? Because memorizing the formula or the method and
turning the crank is fine for the standard text book, and for sclving
vesterday’s problems, but it simply deesn’t work often enough in the
real world. Exercises at the bottom of the page in a mathematics
textbook usually practise only what is on top of the same pages but when
you meet a problem in the real worlds you don®t know what page it's on,
or even if it is in the book! Understanding is essential to applying
mathematics well. Walter Brattain, the Nebel-Prize-winning physicist,
explained in a talk which I heard that the key distinguishing feature of
the practise of science is the right to repeat an experiment, and
thereby to see for yourself that what has been claimed is actually true.
Of course the experiment may in some cases be toco expensives or too
dangercus, but the right to repeat it is there in principle. UWhat
corresponds to this right in mathematics is the right to understand when
and how and why the mathematics works. It is essential for an employee
in industry.

Finally, a user of mathematics in industry must be prepared
for the cpen-ended. In education, mathematics is usually met in the
form of "here is a theorems prove it" or "here is a problems sclve it".
In the real worlds you must alsc be prepared for "here-+is a situation,
think about it. What do you think the problems the right thecrem, might
be?" Model-building courses are an especially geod way for education
to prepare the future emplovee for this kind of activity. However, an
open—ended approach could be used in many places in the existing
structure of mathematics courses, and would be very vauable for the
student, as well as excellent pedagogy.

Mathematics in Telephony

Why did mathematics come so early to the communication
business in general, and to AT&T in particular? David Slepians the
great Bell Laborateories mathematician, gave a talk a number of years
ago in which he philosophized about that. It is net only that
electricity is not easy to weigh or smell or touch (safely)s so that it
leads naturally to meore modelling and less direct perception. In
telephone communicaticnss the behavicr of the sender. the content of the
message, and the nature of the medium are all essentially probabilistic,
and hence require relatively sophisticated mathematical formulaticon.

Who will pick up the phone nexts who will be called, will the call be
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completed, when will the conversation start, will it be a person or a
computer or an image processoir of a recording? All of these gquestions
can only be answered probabilistically. What will the message be? If
we knew: we wouldn®t have to send it! (That is the key to the very
inexpensive mother’s day messages in some countries: They look very
flewery and lengthy, but are in fact one of messages 1| - 16. The
information content is just 4 bits!) The length and content of the next
message can conly be described probabilistically. The medium over which
the message is sent - cable, radic, satellites optical fiber - distorts
the message in various wayss such as amplitude, phase,s frequency
content. How can you describe the distortion? Again, only in terms of
proebability. This is one reason that scphisticated applied mathematics
came tc the telephone business as early as it did.

A telephone system consists of transmissions of switching,
and of the cperation of the entire system. Transmission has usually
been mocdelled using continuous mathematics, and modulation theory,
communication theory, and antenna theory, for example, were developed to
meet these needs. Nowadays, of course, transmission is often discrete,
and the mathematics classically asscciated with switching, that is
discrete mathematics, information theorys graph thecry, and switching
theory also are seen to apply to transmission. The cperation of a
cemmunication system requires specific disciplines such as traffic and
queuing theory, and more generally all of operations research and much
mathematical econecmics. Truly many areas of modern applied mathematics
had their begimmings and develocpment in Bell Laboratories.

Why We Teach Mathematics

The total system for mathematics education has at least four
major purpcses: The mathematics needed for everyday life, the
mathematics needed for intelligent citizenship, the mathematics needed
for your vecation or professions and mathematics as a part of total
human culture. Traditicnally, the mathematics of everyday life has been
the mathematics of the elementary schecl. The mathematics for
intelligent citizenship should basically be the mathematics of secondary
school - we shall return to this gquestion shortly. The mathematics of
your vecation or profession is university mathematics if your profession
requires a university educationi otherwise it is alsc a duty of the
secondary school. Mathematics as a part of total human culture has
really not been the responsibility of any level of education.

Since the weakest part of this argument is without doubt the
mathematics for intelligent citizenship, let us return to it briefly.
What dees this have to do with secondary schocl? The only secondary
mathematics that is ever claimed toc have any aspect of intelligent
citizenship as its purpcse is geometry, which is supposed to teach you
to think. Algebra and trigonometry, while certainly useful and alsc
valuable ways of locking at problems, are REALLY there to prepare for
calculus. What else is needed for intelligent citizenship? The ability
to reason from data, to handle probabilistic situationss to plan and
cptimize and to understand scmething of modellings to a lesser extent,
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to think algorithmically, and discretely as well. These are many of the
same regquirements as we saw for an empleoyee in industry, but at a more
elementary level. I maintain, therefore, that probability, data
analysis, cptimizatien, and modelling, are essential ingredients of the
echool curriculum for all students - as is some familiarity with the
computer. This is true not because they are going to be scientists or
other employees of government or industry, but because they must
participate in the decisions which are the business of all citizens in
a democratic scciety. When should these subjects be taught? They can
perhaps begin in elementary scheol, but they arey in my opinicn,
fundamentally the responsibility of secondary school - and for all of
cur students.

Why do we continue to hold meetings on mathematics
education? Because the four kinds of mathematics we have been
discussing — the mathematice for everyday life, for intelligent
citizenship, for ycur profession or vecation, and as a part of human
culture - continue to change. Why do they change? Because the
technolegy changes, because the applications of mathematics change, and
because mathematics itself keeps changing. All these changes find their
way back intc the content and into the pedagegy of cur total
educational system, and content and pedagogy must change in the light of
changes in technolegys of applications, and of mathematics itself. We.
who concern ourselves with all of these aspects of mathematics and its
teaching, must understand the need for change and must provide some of
the necessary insights and leadership. Compare an internaticnal meeting
on mathematical research with one on mathematics education. You will
rarely hear a paper at ICM which could have been given 20 years earlier.
What has been said at this meeting in Udine which cculd not have been
said at Lyen in 1969, or Utrecht in 19677 There has been much that has
been new, and why was it new? Because it concerned the effects of the
charnges in technoleogys in applications of mathematics, and in
mathematics itself that have taken place in recent years. These changes
are the fundamental forces that shape our view of why we teach
mathematics, including mathematics as a service subject.
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There is a big difference between teaching undergraduate students having no idea why
mathematics is included in their curriculum and what they can do with it, and teaching more
specialised mathematical topics to graduate students who already know why they have
included these topics in their curriculum and who have mastered the basic mathematical
skills. Thus, for most teachers, the latter form a much more pleasant audience to teach. Ser-
vice teaching to undergraduates has its own particular problems, both with respect to
mathematical contents and to didactics.

In this contribution I will combine my own opinions with respect to content, presentation
and developments in the near future with some of the points of view found in the contri-
buted papers.

The starting point of the discussion document [4] for the ICMI-study is that mathematics is

taught as a service subject in response to a need. It then concentrates on three questions:

- Why do we teach mathematics to students of discipline X ?
- What mathematics should be taught to these students?

- How should this mathematics be taught?

I would like to start with considering these questions for service teaching to undergraduates,
thereby describing the situation at this moment at many places. Next I propose to discuss
whether the present situation gives a satisfactory answer to these questions in the light of the
changing demands of the disciplines and the increasing availability of computer hard- and
software.

Obviously, the answers to the questions "Why mathematics?" and "What mathematics?"
depend on the necd for mathematics in discipline X. Often this need arises from the conclu-
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sion that some mathematical tools are indispensable for solving problems in discipline X,
and therefore these tools are wanted in the curriculum. If the use of mathematics in discip-
line X is not very widespread, this teaching usually suffices. For disciplines in which
mathematics is used frequently, the demand of service teaching is usually considerably
higher, both quantitatively and qualitatively; students in such disciplines not only need
skills in applying mathematical techniques, but also an understanding of the mathematical
concepts.

In any case, in the beginning of their study the students must be taught the elementary
mathematical techniques. Therefore it is not surprising that all over the world undergraduate
service courses mainly deal with calculus and linear algebra.

How these subjects should be taught depends on the need of discipline X. If the need is
only an acquaintance with the tools, then teaching of the techniques will be sufficient. How-
ever, if the role of mathematics in discipline X is more fundamental, then already in the first
year emphasis must be laid on the concepts as well. No doubt in the second situation the
teaching should be done by mathematicians, but also in the first situation there are strong
arguments for mathematicians being the teachers. They have the mathematical background
for explaining mathematical techniques and a broader knowledge of which techniques can be
applied in specific situations. Indeed, we see that with only a few exceptions the teaching of
mathematics is done by mathematicians.

Since for many years the same calculus and linear algebra is taught nearly everywhere along
more or less the same lines, it may seem that these courses provide a satisfactory answer to
the questions raised in the discussion document. However, despite the striking similarity in
these courses all over the world and despite our experience for many decades in teaching
them, the situation is not as problemless as one might expect.

Roughly speaking, there are problems both with the motivation of the students and the atti-
tude of departments and staff for the undergraduate service teaching. There are reasons to
doubt whether our calculus and linear algebra courses are as useful as we think they are.
The increasing use of new parts of mathematics and of computers in the various disciplines
forces us to reconsider the contents of our undergraduate service courses. It might be that
we have to conclude that the situation with respect to the undergraduate service teaching is
not at all satisfactory and that we have to reflect on what really has to be done instead of
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what we do now.

Let us describe some of the problems in more detail.

In most mathematics departments research and the education of mathematicians have the
first priority; service teaching is considered as a matter of secondary importance. Therefore
often service teaching does not get the attention it needs. In particular when there is shortage
of staff, as, for example, we were told is the case in Africa, the teaching of service courses
is entrusted to young and inexperienced lecturers, sometimes graduate assistants, while the
more experienced lecturers teach the honours or specialist courses.

Obviously this is a far from ideal situation. The importance of service teaching for a
mathematics department has to be recognised. Often a mathematics department serves more
students in other disciplines than students who major in mathematics and for that reason
alone service teaching should not be treated as a matter of secondary importance. Good
course management is essential if a department is to meet successfully the diverse objectives
of the host departments, the sometimes less than enthusiastic staff and the large enrolments
(Hodgson and Muller [3]). Service teaching on a major scale needs an organisation and
management comparable with that of higher vocational schools, adapted to the university
system. At some universities such organisations exist. For example, most of the engineering
faculties in Japanese universities have special departments to teach mathematics to engineer-
ing students (Murakami [5]). Also at some universities in the Netherlands such organisations
exist, but they strongly suffer from the governmental pressure on the departments to do
research.

Many staff members dislike undergraduate service teaching. As Hodgson and Muller [3] for-
mulate it, many mathematics faculty members perceive a service course as one or more of
the following:

- large classes with a majority of uninterested students with a rather weak mathematics
preparation,

- restricted and overloaded syllabuses, too difficult for the students and with topics remote
from research interests, with emphasis on techniques,
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- atask for which little university credit is given.

Consequently, most teachers restrict themselves to the use of well-known standard texts and
training in techniques; only a few are really interested in problems arising from undergradu-
ate service teaching.

Now let us turn to how students may perceive a mathematics course. Since the students did
not choose mathematics as their main field of study, they are tempted to give the subject a
low priority and consider it just as a hurdle to jump over. Hence they are not motivated to
spend much time on mathematics. Another reason for this attitude is that they have no idea
about the role of mathematics in their discipline; lack of integration between mathematics
and application raises doubts about the reason why some topics in mathematics are taught

(Bacciotti and Boieri [1]). Many contributions to this conference contain similar complaints.

An interesting observation comes from Patetta [6]. He remarks that in countries where
university study is considered to be a right for all the people (with adequate grounding),
resulting in a non-restricted access to the universities, independent of the needs of the coun-
try, there often is an overpopulation in the classes with students without a definite vocation
for their studies.

In order to improve the motivation of students, many contributions contain a plea for incor-
porating many examples from the student’s discipline. However, it is not easy to find good
examples. Most examples I have seen so far are either trivial, or need knowledge on the part
of the student that is usually not acquired by the beginning of the first year or force the
mathematics teacher to teach topics from discipline X. Since in general mathematicians do
not have much knowledge of how mathematics is used in discipline X, close cooperation of
the mathematicians and the teachers of the discipline will be necessary. In this way a better
tuning of the mathematics courses and the courses of discipline X and the use of relevant
examples in the math courses can be achieved.

The problem also exists on the other side. Often teachers from discipline X are scarcely
acquainted with the contents of the mathematical courses and with progress in mathematical
education. They sometimes use outdated mathematical methods and notation and are not
aware of the mathematical equipment of their students. Related to this is the problem
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signaled by some contributors that many user departments have no clear idea about the
mathematics they really need.

A final problem that I want to mention partially depends on the national situation. One of
the problems a teacher may be confronted with when starting a first year course is the
diverse mathematical knowledge of the group of students. For some disciplines the level
may "automatically" be acceptable, e.g. physics, electrical engineering, but in other discip-
lines for some or for all students it might be necessary to start with secondary school
mathematics, despite the fact that the students passed the school-leaving examinations. Some
contributors to this conference mentioned the low level of preparation of secondary schools

for university study.

So far I have concentrated on the existing situation and only mentioned some problems with
respect to teaching and organisation. But matters are changing, and these changes cause
problems too. The disciplines start to want to have more mathematics, but do not want to
spend more time on mathematics in the curriculum. Combining this with a, to my opinion,
decreasing level of knowledge and understanding on the part of first year’s students, we are
forced to teach more mathematics in a shorter time. But, as Sicgel [8] formulates it, a stu-
dent is not a vessel, we cannot just pour mathematics in. As was pointed out at Udine, a
point is rapidly reached when the majority of the students cannot master so much mathemat-
ics in so short a time.

Particularly for disciplines that need a lot of mathematics, we have to admit that it is impos-
sible to teach all the mathematics the students will or might need in their career. Indeed,
often the problems in these disciplines are so complex that cooperation with applied
mathematicians is necessary, and therefore ultimately the students must reach a level that
they can communicate with these mathematicians (who, in turn, have to be able to commun-
icate with people from other disciplines). In such situations the students need not only an
ability to apply mathematics, but also a thorough understanding of the mathematical basic
concepts. Teaching to these students must emphasise mathematical thinking and concepts
rather than mathematical tricks.

For engineers, Roubine [7] suggests the tcaching of mathematics more or less disconnected
from other courses on the abstract level of that of today’s papers, so that the engineer will
be able to read what is published today or to discuss with mathematicians. Another
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important argument for this is that it is easier to acquire abstract knowledge at university, at
the age of about 20, than later.

On the other hand, Bacciotti and Boieri [1] argue that the necessity for an engineering stu-
dent to have a deep mathematical background is not always obvious. More precisely, every-
body agrees that many sciences require very advanced mathematics on a research level.
However, most graduates will find routine jobs, where they will be required only to use for-
mulas discovered and verified by others.

Very interesting is the contribution of Clements [2]. In his opinion, the objectives for ser-
vice courses to discipline X should not only be to teach the students a certain body of facts
and techniques important in X, but also to teach the students how to acquire further
knowledge and how to use their knowledge. He has made some successful experiments in
this direction.

Now let us turn to the question whether out traditional first year courses indeed give the stu-
dents any skill in applying mathematical tools or any mathematical insight. In Siegel’s well-
documented contribution [8] the situation in the United States is investigated with a very
negative outcome. As she formulates it, the students seem to pass the examinations but they
cannot do anything with the mathematics they have had. I have no reasons to believe that in
other countries in general the situation will be very different.

One of the reasons for this bad result might be found in the interaction between the teaching
system and the examinations. One of the goals of a service course is to provide the students
with a certain number of techniques. These techniques can easily be assessed by means of
short questions in standard examinations, and therefore this is the objective concentrated
upon by most students and the majority of university staff. One of my chemistry students
once explained her difficulties with studying mathematics. She said that the secondary
school mathematics was simple; with every technique there was only one type of exercise,
and conversely. Now she was confronted with simple problems where she had to choose
which technique to apply. But she was never asked to explain why or under which condi-
tions the technique could be applied.

Indeed, it seems that we have quite a lot of experience in teaching tricks to the students and
asking back an application of the trick at the examination, but hardly any experience in
teaching mathematical thinking.
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Maybe this is a place to say a few words on "mathematical thinking" in a service course.
Most mathematicians interpret this as "rigor", that no statement can be believed until a rigid
proof has been given. However, very often proofs requiring a lot of e-8 techniques are
time-consuming and hardly contribute to understanding. I feel it very reasonable that a non-
mathematician should believe a mathematician when the latter states that a certain statement
holds.

In my opinion, a feeling for mathematics and mathematical sense is much more important
than rigor. Even when teaching service courses at a technical and elementary level we can
give the students a feeling for mathematics by not stressing the technique, but the heuristic
considerations behind it. For example, one of my first-year engineering students argued that

lim Vx2+4x —x =2
X —00

in the following way: for large x the graph of the root function is very flat, and therefore for
large x the first term practically equals Vx?+4x +4 = x + 2, which implies that the limit
equals 2. In my opinion he showed a very good understanding, but many of my colleagues
disagree.

It is remarkable how many traditional exercises can be "solved" in a similar way by simply
"looking at the formula". For example, the series

Y x"n’logn

n=1
resembles a geometric series with common ratio x, since for large n the numbers
(n +1)%log(n +1) and nZlogn have the same order of magnitude. Hence the radius of conver-
gence of this series must be 1.

The use of this type of heuristic consideration often already shows the correct answer to the
problem before any technique is applied. In my experience it is very stimulating to the stu-
dents to do things like this when lecturing. I am not sure whether these examples really
demonstrate the teaching of mathematical insight, but this way of teaching certainly gives
the students a feeling for mathematical sense.

The many complaints about the introductory courses concerning the inability of students to
use the mathematics they have had and on a lack of conceptual mastery may raise severe
doubts as to whether the traditional courses are as useful as we think they are. But not only
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for this internal reason is it absolutely necessary to reconsider the questions why we teach
certain topics in what way; two external reasons are the changing demands for mathematics
in the disciplines and the widespread availability of computers and software packages. The
departments also beg for discrete mathematics, use of numerical techniques, difference equa-
tions etc. Indeed, at some places courses in discrete mathematics are already given in the
first year service curriculum, and also at some institutions there are experiments with the use
of the computer in service teaching.

However, I feel that we have to prepare for much more drastic changes in the traditional
calculus and linear algebra courses. At the moment there is a lot of cheap and powerful
numerical software available, and soon powerful computer algebra packages will be avail-
able too. Then the student will be able to solve nearly all the problems raised in the tradi-
tional courses and also much more complicated problems by simply pressing some keys of
the computer.

Of course, it is not quite as simple as that. The students must be taught how to use the
software packages and how to formulate the problem in such a way that they can solve them
by using the packages. This requires a thorough understanding of the concepts, and I expect
that it is on this aspect that the emphasis of future courses will be laid.

Many contributors stress the relevance of the use of computer algebra software. Siegel [8]
formulates it in the following way: we would be remiss if we did not attempt to use sym-
bolic manipulators in many service courses. They allow for exploration and experimentation
with complex problems and, for non-mathematics majors especially, they represent the way
they will be doing mathematics in the future. Those who have experimented report very
satisfactory results. Many of the factoring problems, techniques of integration, complicated
derivatives are quite irrelevant for these students. Frequently, they are more conversant with
computers than is their mathematics instructor. Hodgson and Muller [3] remark that many
know-hows conveyed in mathematical service courses have been readily available on com-
puters for more than a decade, but that the impact on undergraduate mathematics teaching is
still to be felt. They believe that it is vital that more mathematics departments begin experi-
menting with the introduction of symbolic mathematical software.

It is very encouraging to see that at those places which have started to experiment, the
results are promising. However, these experiments are done by those few people who are
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really interested in the problems of service teaching or in the impact of the computer on
teaching, and they all agree that a lot of research still has. to be done. Unfortunately, most
mathematics departments are not really interested in this kind of research; mathematical
research is felt to be of much more importance than solving the didactical problems arising
from the necessary changes in the service teaching. But maybe even a more serious problem
is in the attitude of many of the experienced service teachers. Perhaps we are convinced that
a lot has to be changed in service teaching, but most staff members are not, and stick to
their traditional teaching despite the fact that the computer can do most of the things better,
faster and more accurately than they can. They simply dislike computers, and argue that you
do not teach the students mathematics when you teach them how to press some keys of the
computer. Often they forget that for the students many of the techniques in the traditional
courses are similar to computer programmes: they can be used without any idea why and
how they work. Another argument often heard is that mathematics is mathematics, indepen-
dent of the computer, and they are teaching mathematics. Indeed, I think that mathematics is
the invariant in the traditional and future courses. But I expect that in the future the concepts
will be central to the courses, while nowadays the techniques are the most important things.
For example, now we concentrate on various techniques on finding a limit and hardly teach
what a limit is; in the future we will concentrate on what a limit really is and how the con-
cept of a limit or an approximation is used in various situations, while the computation of
more complicated limits is left to the computer. The computer does not change the
mathematics, but it changes the problems we are going to solve.

I believe that in future service courses will be both more fundamental and more practical
than they are now, with a lot of non-standard, more thought-provoking problems and simple
modelling, where for the more technical computations the students rely on the computer. To
create such courses seems to me a challenge worth accepting.
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TEACHING MATHEMATICS TO ENGINEERING STUDENTS UTILISING
INNOVATIVE TEACHING METHODS

R R Clements
Department of Engineering Mathematics, University of
Bristol, Bristol, BS8 1TR, Great Britain

Abstract. Teaching mathematics as a service subject makes
demands upon the teacher which are, in some ways, different
from teaching mathematics as a main subject and, in others,
similar but with an altered emphasis or level. This paper
first discusses the general aims of a degree course and then
identifies some ways in which traditional mathematics
teaching fails to meet these aims. Three innovations in
mathematics teaching, guided reading, simulation/case
studies and the continuous system simulation laboratory, are
then briefly described and the ways in which they contribute
to the achievement of the overall aims of a degree course
suggested. The strengths and drawbacks of each innovation
are mentioned.

INTRODUCTION

If we are to discuss the teaching of mathematics as a
service subject in tertiary education institutions it is appropriate
first of all to be clear what are the overall objectives of degree and
diploma courses in such institutions. It is the author's feeling that a
broad summary of the objectives for a course in X might be given as

i) to teach students a certain body of facts, techniques and
principles important in X,

ii) to teach students how to acquire further knowledge and technique
in X as and when the need arises subsequent to their formal
studies and

iii) to teach students how to use their knowledge of X in the solution
of problems that arise in the real world.

It is not immediately clear to the author to what extent this broad
summary is applicable to the study of arts subjects but it is certainly
a reasonable statement when applied to the broadly vocational subject
areas - the natural sciences, engineering, mathematics, medicine,
economics, law etcetera. Accepting these principles it is then
reasonable to suppose that the mathematics instruction given to students
of these subjects should be guided by the same objectives. The author's
experience over the last fifteen years has been of teaching mathematics
to students taking degree courses in a variety of engineering
disciplines (including a degree course in engineering mathematics). The
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three principles given above have guided his own development of ideas
about the teaching of mathematics to engineers and have consistently
been found to be applicable.

It seems unlikely that anyone would argue with the first of the
objectives proposed. Indeed, since it is the objective most readily
assessed by a conventional degree examination, the backwash effect of
the examination system is to ensure that this is the objective
concentrated upon by most students and by the majority of university
staff. In many instances this concentration is so severe as to be
detrimental to the pursuit of other possible objectives.

Whilst the relevance of the second objective is not new it has probably
acquired increasing importance as the pace of technological and social
change has quickened. Today it is even less likely than ever before
that the knowledge and skills acquired at the beginning of a career will
remain relevant and sufficient for a working lifetime. The ability to
add new abilities to one's repertoire and adapt present skills in
response to changing demands is very important. One cannot do this
unless one has learnt how to continue to learn. This objective assumes
additional importance when considering the teaching of mathematics as a
service subject. Because of the pressures on the curriculum it is a
common experience of mathematical educators that they are able to teach
less mathematics than they consider desirable for the students
concerned. Under these circumstances the teaching of the ability to
learn mathematics independently is of vital importance.

For the teaching of mathematics as a service subject the third objective
might be modified to read 'to teach students how to use their
mathematical knowledge in the solution of problems that arise in the
real world of X'. A common complaint of students learning mathematics
in support of their main field of study is that the relevance of the
mathematics is not clear. If they are taught not only mathematics but
also how to use it in their own field of interest this complaint should
be alleviated. This should not be taken to mean that only mathematics
directly and immediately relevant to their main field of study should be
taught. In many cases there are good arguments to be made for teaching
some relatively abstract mathematics (for the sake, perhaps, of
developing abstract reasoning and other skills). At least some of the
mathematics taught must, however, be relevant to the main field of study
and the use of such mathematics should also be taught.

The traditional methods of teaching mathematics both as a main
discipline and as a service subject are much better suited to the
achievement of the first objective than of the second or third. In the
past teaching has been chiefly oriented towards communicating
mathematical knowledge, technique and principle, and the learning of
skills both of application and of further learning has been assumed to
be largely incidental to the other activities during the degree course.
Skills of application have been assumed to be acquired whilst learning
about a series of standard mathematical models. The skills of learning,
and general study skills, have been assumed to exist already, or to be
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acquired naturally or, perhaps, to be fostered by personal tutorial
contact. In reality skills in these areas have been, at best,
incompletely learned by most undergraduates. That this is the case has
been well illustrated by reports from employers of graduates (Gaskell &
Klamkin 1974; Handelman 1975; Klamkin 1971; McLone 1973).

Over the period during which the author has been teaching mathematics
as an engineering service subject he has introduced or helped to develop
three particular innovations in teaching methods which have been
designed to improve, in areas addressed by the second and third
objectives, the abilities of graduates from certain courses at Bristol
University. To help our students learn how to learn mathematics
independently we have used the guided reading method to teach selected
courses. To develop the ability of our graduates to use mathematics in
the solution of real problems we have firstly used a technique best
described as simulation/case study and secondly developed a course in
continuous system modelling which is based around a laboratory format
using a specially designed continuous system simulation package and
hands-on use of microcomputers. The next three sections of this paper
briefly describe each of these developments in turn, identify their
strengths and disadvantages and suggest the remaining unanswered
questions and issues associated with these developments.

GUIDED READING

The educational effectiveness of the traditional technique
of university teaching, the course of one-hour lectures, has
increasingly come to be questioned. Bligh (1972), amongst others, has
extensively explored the merits and demerits of the lecture method.
University teachers have increasingly realised that a richer variety of
alternative learning experiences is both educationally more effective
and intellectually more rewarding for teacher and student.

Amongst the alternatives which have been proposed and explored is the
use of guided reading. The starting point for this departure is the
observation that, during a conventional lecture course, a considerable
part of the time is devoted to the transference from the notes of the
lecturer to the notepads of the students of relatively staightforward
factual material. When much of this material is readily available in
textbooks, it can be argued that the lecture time spent reproducing this
material is spent inefficiently or unproductively. Why not instruct the
students to read the textbooks instead? Most lecturers feel that they
have something in the way of insight, context and explanation to add to
the bare bones of the mathematical material presented in a textbook and
would therefore resist this course. Guided reading represents a halfway
house between the two extreme options. Given a textbook in which
sufficient of the factual and background material needed for the course
is to be found, the lecturer provides the students with a set of written
notes which specify, guide and supplement their reading of the book.
Their study of the textbook is then further supplemented by a series of
discussion classes or tutorials in which lecturer and students can
discuss, amplify and review the material being learned.
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The theme of the 1977 University Mathematics Teaching Conference was
teaching methods for undergraduate mathematics. In the chapter of UMIC
(1978) dealing with guided reading a range of variations of the basic
theme are described and reviewed. Amongst the merits of the guided
reading approach mentioned therein are
a) it develops students' confidence in their ability to read
mathematical textbooks and learn mathematics independently of the
lecturer,
b) it reduces the sterile labour of note taking,
¢) it introduces more flexibility in the depth to which students study
the material (thus enabling able students to be stretched without
losing the attention of weaker students) and
d) it generates greater student motivation and encourages students to
discuss mathematical work amongst themselves.
The primary reason for its adoption by the author and his colleagues was
the first though the others are of course welcome bonuses.

The prerequisites for a successful guided reading course are a suitable
textbook and a set of instructional notes. (It should be mentioned
incidentally that guided reading courses can also be framed entirely
around material written by the lecturer but, in this case, the objective
of teaching students how to use textbooks is lost and that was one of
our primary aims). The notes require careful preparation. In courses
prepared by the author such notes have functioned to
a) specify the reading that was to be done,
b) specify exercises to be done and provide solutions for student
self-assessment,
c¢) comment on sections of the book which the lecturer considers poorly
explained or presented and provide alternative treatments or
explanations,
d) provide additional material omitted from the books and
e) give guidance on notes to be made for reference and revision
purposes.
The work set for the courses was divided into a set of units of roughly
comparable work load. A series of discussion classes were also
scheduled at which each unit's work was reviewed, discussed and set in
context. It was made clear to the students that, in order to benefit
from these classes, they must have completed their independent study of
the material in the unit prior to the class. In the author's experience
roughly 65% of the class contact hours which would have been devoted to
lectures are needed for such discussion classes. Such classes
should, ideally, take their direction from the lecturer and the students
in roughly equal part. Experience indicates that it is a mistake for
the lecturer to be purely reactive to the student demands in such
classes - the lecturer must be prepared to challenge the students with
new questions and ideas leading from their study of the textbook
material. On the other hand sufficient time must be devoted to dealing
with questions on both matters of understanding and principle and on the
exercises set.
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The student reaction to courses given by guided reading has been by and
large favourable. Responses given by students informally can be summed
up as :-

a) Students enjoyed the courses. This was partly because of the
novelty factor and the resulting increased range of educational
experiences to which they were subject.

b) Students would like more courses given in this style but not too
many. The most popular estimate of the appropriate mix was
approximately one third of all courses in the
guided reading style.

¢) Students liked the additional freedom to pace their own work which
guided reading gave, particularly the opportunity to work ahead
when other work was slack.

d) Paradoxically they also identified this freedom as a danger
because they could easily defer work on these courses when other
courses demanded more attention. They felt that some spur was
needed to guard against undue procrastination. Work to be handed
in from time to time might provide such a spur. The discussion
classes were helpful in this respect.

e) They reported that, initially, they were inefficient in taking
notes from textbooks, copying large chunks of the book into their
notes. Subsequently many students developed a style in which they
read the material first, attempted the examples and then made much
briefer notes. This style of note taking was judged to be
particularly useful for examination revision.

To sum up then, the author and his colleagues have found guided reading
to be an useful and enjoyable mode of teaching. It encourages students
to develop their mathematical skills in ways which supplement the skills
they acquire in more conventional teaching. The students appreciate the
additional variety which it brings to their learning experiences. The
technique is most useful when an appropriate textbook can be found for
the course. Such a book must not only cover the appropriate material (or
at least the major part of it) in an appropriate way but also be
suitably priced for an essential student purchase. It is necessary for
staff using this technique to prepare the course in advance and provide
carefully written and structured supplementary notes. The class contact
loading of the staff may be reduced by this technique but not very
greatly. Approximate cost estimates made in UMTC (1978) indicate that
guided reading is a more efficient use of staff resources but not by a
very great margin. Care must be taken that the existence of a set of
prepared supplementary notes does not prevent change for a number of
years thus causing the course to become ossified. The method has been
used at Bristol with groups of students up to about 20 in number.
Reports in UMTC (1978) mention much larger groups though, in these
cases, discussion in classes must be more difficult. One small problem
which has been encountered occurred when one lecturer taught a guided
reading course from his own textbook. Students reported that when, in
classes, they asked questions about points in the textbook which caused
them difficulties, they received the same explanation as was given in
the book! This, under the circumstances, is not surprising. It does,
however, indicate that lecturers should be wary of using their own books
for a guided reading course and, if they choose to so do, take this
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potential problem into account. A more detailed account of the
development and use of guided reading courses by the author and his
colleagues may be found in Clements & Wright (1983).

SIMULATION/CASE STUDIES

One of the principle deficiencies in the skills of
mathematics graduates entering employment in industry which is
identified in the literature, (Gaskell & Klamkin 1974; Handelman 1975;
Klamkin 1971; McLone 1973) is that they are lacking in the abilities to
recognise the mathematical properties of problems expressed in terms of
the (non-mathematical) problem source domain, to formulate a
mathematical model of the problem and, having solved that mathematical
problem, to re-interpret the mathematical solution into a statement of
solution in the problem source domain and to explain the solution, in
their own terms, to non-mathematicians expert in the source domain - in
short they have little ability in mathematical modelling. Whilst the
studies mentioned dealt primarily with graduates from mathematics degree
courses their findings should be equally applicable to the teaching of
mathematics as a service subject. Obviously service mathematics will
not teach the same level of mathematical skills but, within the
constraints of the level of mathematics taught, it is just as important
that students be taught not only mathematical skills but also the skills
of the creative application of mathematics to their own discipline. It
has already been pointed out that traditional university mathematics
teaching, and this includes service teaching, concentrates on teaching
mathematical skills and techniques, and that the system of assessment
generally used reinforces this tendency. In the case of service
teaching the restriction on the time available for mathematics also
causes lecturers to concentrate on getting over the mathematics to the
detriment of teaching its application.

The growing recognition of the shortcomings of traditionally
mathematically educated graduates has lead to a number of initiatives
both in mathematics degree courses and in service mathematics courses.
The main body of these have been in the area of mathematical modelling.
Initiatives in the teaching of mathematical modelling are described in
d'Inverno & McLone (1977), McDonald (1977), and Oke (1980) for instance.
There has been a parallel development of the philosophy of mathematical
modelling. The literature in this area was recently reviewed in
Clements (1982b). In the Engineering Mathematics degree course at
Bristol University a one term course has been introduced the aim of
which is to familiarise students with the problems and techniques of
using mathematics in the solution of real industrial and commercial
problems. The course is based round a series of exercises which are
best described as simulation/case studies. In these exercises students
work in small groups. This is, of course, a marked contrast with the
pattern of most of their degree studies where the emphasis is placed
upon individual work and responsibility. Group working and
responsibility is, however, typical of the working environment into
which most of them will go on graduation and some prior experience of
this is valuable.
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At the start of each exercise each group of students is given a package
of written material typically comprising reports, memoranda, design
drawings, correspondence, data etcetera. These materials place the
group in a simulated environment as mathematical practitioners facing a
real problem. The problem is stated in the terms of the problem domain,
not in mathematical terms, and it is the task of the students to grasp
and understand the real problem, determine what sort of mathematics will
help in its solution, develop a mathematical model of the problem and
produce a mathematical solution, recast that mathematical solution in
terms of the problem domain and finally evaluate what they have done and
report it in appropriate terms. During this phase of the exercise the
students are instructed to treat the members of staff tutoring the
exercise as if they were the project leader or section head in charge of

the work in the simulated environment. In turn the staff must play
their role within this context. This will mean that the staff must

react to students' suggestions and directions rather than imposing their
own. They must be prepared to relinquish some of their control of the
learning process. Their role becomes that of experienced practitioner
offering advice and suggestions, exactly the role of the project leader
or section head. Each exercise is designed to occupy two or three
weeks. The students have one regular weekly meeting with the tutor in
charge of the exercise and organise their own work in between meetings.
They may, if they wish, consult the tutor more frequently but this is on
an informal basis. This phase of the exercise constitutes the
simulation aspect of the technique. It is a simulation in the same way
as management games, military manoeuvres and other training exercises.

The production of the materials for the exercises could, possibly, have
been undertaken within the University. However it was felt that, if it
were possible to use real problems which real organisations had faced
and solved, the realism of the exercises would be improved.
Additionally, students would then, by the way, obtain some indication of
the variety of challenging problems faced by industry and this might
have the beneficial side effect of helping students in their career
choices. A project was set up to approach industry and solicit suitable
problems. The project, and the basic philosophy of the course, are
described in more detail in Clements & Clements (1978). The simulation
exercises actually used in the course are based on rather than directly
copied from the industrial problems. In some cases the donor wished
some changes to be made for commercial reasons and in most cases some
changes were made for educational reasons. A side effect of obtaining
problems in this way was that the method of solution adopted by the
donor institution was available for comparison with the students work.
This comparison is made after the students have finished their work on
the problem and completed their report. It is in this way that the
element of case study is introduced into the hybrid simulation/case
study concept.

The course has been in use for eight years and sufficient experience has
been accumulated to indicate the strengths and the drawbacks of the
method. Firstly, how do students react to the demands made by this type
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of work? Observation of students during the course and discussion of
the course with students at the end of the year have both contributed to
the identification of an overall pattern of student reaction. As might
be expected, students are initially bewildered and disoriented by the
open ended nature of the task and the lack of defined directions.
However, once they begin to succeed they rapidly gain in confidence and,
by the end of the course, most have developed at least some ability to
be creative with their mathematical skills. With the weaker students
the tutor often has to draw out ideas and help as unobtrusively as
possible in the formulation of the first models but once some measure of
success is achieved confidence usually grows rapidly. It is also
generally the case that, by the end of the course, students report that
the course is interesting and challenging and helps them to see the
relevance of the mathematics they are learning.

The problems posed by assessing student performance are, as may be
surmised, different from those posed by more conventional courses. A
technique which averages a series of subjective assessments made by the
staff tutoring the exercises has been evolved. The method is described
in more detail in Clements (1982a). The author does not, in fact,
consider assessment of the course particularly vital. One of the
purposes of assessment is to motivate the students. Motivation has not
generally been found to be a problem on this course - the fascination of
the problems is usually sufficient to guarantee student involvement.
The principle benefit derived from the course is the changed attitudes
and approaches of the students. Such changes, being more in the
affective domain than the cognitive one are difficult to assess by
formal means.

The primary drawbacks of the simulation/case study method of teaching
are the demands made upon staff by the unconventional role which it
calls upon them to adopt and the staff contact time needed. The method
obviously calls upon staff to play a role, a somewhat different way of
relating to students than their usual one. Within the role staff must
react to student suggestions in an appropriate way. There is virtually
no scope for didacticism in this situation. Tutors must be prepared to
embark upon each session with each student group with no certain
knowledge of where the session will lead. More than anything this
demands that tutors have the confidence to put themselves in an exposed
position. The method is also somewhat demanding of staff contact time.
As used at Bristol each group of three students has a weekly
consultation with their tutor which is nominally three-quarters of an
hour. We have not used the method with groups larger than 20 students.

This description of the simulation/case study method has been
necessarily briefer than might be desirable. More detailed description
of the technique and some examples of the materials used may be found in
Clements & Clements (1978) and Clements (1978, 1982a, 1984a, 1988). A
description of a similar course developed independently at Oklahoma
State University, USA, may be found in Agnew & Keener (1980, 1981) and
Agnew et al (1983). The author is also aware of similar developments at
Lulea University, Sweden.

52



Clements: Innovative mathematics teaching methods 53

THE CONTINUOUS SYSTEM SIMULATION LABORATORY

The simulation/case study course described in the last
section has provided some training for our undergraduates in the general
area of mathematical modelling as well as much experience in other
skills which feature in the post-graduation working environment.
However, as far as the mathematical modelling is concerned, the course
rather throws the students in at the deep end. Other initiatives
(d'Inverno & McLone 1977; McDonald 1977; Oke 1980) have approached the
teaching of modelling in a somewhat more structured and gradual way.
One aspect of modelling which the author and his colleagues have
attempted to teach in a more structured way is the computer simulation
of continuous and discrete systems. Note that, in the last section, the
term simulation was used to denote an instructional method. In this
section the term is used in the description of the material and
techniques being taught. The two uses should not be confused.

The role of simulation in mathematical modelling courses is well
established (Huntley 1984; Moscardini et al 1984). Modelling exercises
and activities often result in models which lack viable analytical
solution techniques. 1In these circumstances simulation offers a
solution route (and one that would be adopted in an industrial or
commercial environment). Simulation may be implemented either by
writing a specific computer program designed for the problem under study
or by the use of one of a range of general purpose simulation systems
such as GPSS, CSMP, CSSL, ACSL, DYNAMO, TUTSIM and many others. The

ma jor languages like CSMP, ACSL, CSSL, GPSS and DYNAMO are usually
available on multi-user mainframe or mini computers. The author's first
approach to teaching simulation used one or other of these languages.
It was rapidly apparent that students at first found such systems far
from simple to use although regular users quickly gained adeptness.
Further, most multi-user computers in institutions of higher education
are heavily loaded with resulting poor response, at least during class
hours. As a result of both these factors students who needed to
simulate a fairly simple system preferred to write their own simulation
program for the problem in hand using a language with which they were
already familiar (usually Pascal, Fortran or Basic). As microcomputers
became more widely available in the university such programs were
increasingly written using these machines, again usually for reasons of
convenience and familiarity and particularly because an increasing
number of students owned their own microcomputers. The conclusion must
be that, whilst simulation should be a regular tool of the mathematical
modeller whether student or experienced practitioner, in practice the
main available large systems are not ideally suited to the needs of
tertiary education courses in modelling. This conclusion is reinforced
by the experience of Moscardini et al (1984) who describe a simulation
package, IPSODE, written within their institution specifically as an
introductory simulation package for their students.

More recently simulation languages for microcomputers have begun to
appear. Experience with the TUTSIM package, a block oriented



Clements: Innovative mathematics teaching methods

continuous system simulation language available on Apple microcomputers,
indicated that students found it particularly easy to learn and use.
The block oriented input language was appealing, particularly to
engineering students who are familiar with control theory ideas, in its
visual and diagrammatic approach to the construction and representation
of models. The package also has particularly good facilities for the
graphical presentation of results. The course at Bristol had to be
based in a laboratory equipped with Acorn BBC microcomputers. Since
there was no suitable simulation system available for this microcomputer
the BCSSP system (Clements 1984b, 1985a), which uses largely the same
input language and provides similar facilities to TUTSIM, was written.
BCSSP has powerful facilities for the presentation of results in
graphical form including the comparison of results from different
simulations and can rapidly produce hard copy of graphical output. This
facility was felt to be important for its role in the systems course.
The availability of this package has opened up possibilities for new
teaching styles which are being exploited in the teaching of systems
modelling.

One of the skills which is felt by the author to be important to the
effective user of simulation is the ability to integrate analytical and
theoretical study of a system with numerical investigation of that
system via simulation. Without that skill there is a severe danger that
the user of the simulation package merely accumulates mountainous
quantities of simulation data about the system under various conditions
without any theoretical framework within which to organise and
understand that data. The importance of this ability is not, of course,
limited to simulation. The capability of integrating analysis and
numerical work 1is important for the effective user of mathematics
generally and as such contributes to the satisfaction of the third major
objective suggested above. The availability of the BCSSP package has
made possible the design of a course aimed at helping students develop
this skill through a kind of mathematical laboratory.

The main objective of the laboratory is to provide a series of
investigations which demand that the students integrate simulations and
the application of their more theoretical analytic skills in order to
elucidate the properties of some systems with which they are relatively
unfamiliar. This synthesis of investigative modes is firstly a very
powerful exploratory technique and secondly one which, in the author's
experience, undergraduate students need more assistance in developing.
The essence of the synthesis lies in the realisation that professional
mathematicians do not make theoretical advances in a vacuum. It is more
often the case that mathematicians know (or at least have a hunch
about) what they want to prove before the proof is sought. That
knowledge may come from any one of a variety of sources but numerical
studies and simulation are a common and powerful source of such
pre-knowledge. The abuse of simulation is to use it as a device for
avoiding having to grapple with the theory behind a problem. Whilst
studies of systems may sometimes unavoidably be based solely on
simulation it is, in general, not the optimal mode of investigation.
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The type of problems which have been sought for this module are problems
in which, initially at least, analysis does not provide a complete
understanding. Progress may perhaps be made by exploratory simulation
which reveals the principle features of the system. Theoretical
explanations for the revealed behaviour may then be sought, often using
techniques such as linearisation, small order or large order analysis in
some parameters etcetera. If such explanations are found their
appropriateness and range of validity may then be checked by further
simulation. Obviously not all problems will exhibit all these features,
but the course overall is intended to develop the abilities of the
students to use both simulation and theoretical analysis in ways which
support and illuminate each other. The lecture content of the course
introduces theoretical ideas, such as linearisation and stability,
which underpin the use of simulation in this manner. The philosophy and
implementation of the course is described in more detail in Clements
(1985b, 1986).

It is only possible, of course, to use a method such as this if
appropriate computer resources are available. The laboratory used by
the author's department for this course allows students access to one
microcomputer per student pair. If larger groups of students were to
take this course it would be necessary to split them into smaller groups
and run parallel courses or to expand the laboratory. Either option has
serious resource implications. The course also relies heavily on
students undertaking computational project work between formal
laboratory sessions. This work is not, in our case, timetabled but it
does, of course, require that the students have adequate access to the
laboratory facilities between formal sessions. That, in turn, requires
that the laboratory have spare capacity and is not so heavily used for
formal teaching that informal student access is very restricted. The
requirements for laboratory backup to this teaching are therefore fairly
stringent.

The problems which are used in the laboratory also need to be carefully
selected and prepared. A modest library of such material has been
developed by the author and his colleagues but there is a need for more.
Mechanisms for the cooperative development and exchange of such material
between institutions is very valuable.

The examination of the course is less easy than conventional courses.
Ideally it would be desirable to be able to set a form of practical
examination with students using microcomputers and the simulation
package to carry out an investigation of an unfamiliar system using the
techniques which they have learned during the course. Currently
resource and other technical difficulties have prevented the
implementation of such an examination but the concept has not been
discounted for the future. For the time being a conventional written,
three-hour, unseen examination is used.
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CONCLUSION

This paper has described three innovations in teaching
methods which have been adopted in the teaching of mathematics to
engineering and engineering mathematics undergraduates. In each case
the innovation has been driven by the possibility of meeting a wider
educational objective than is readily feasible using the traditional
lecture method. Each innovation brings with it strengths and
weaknesses, problems which must be overcome for effective implementation
and use. It is the experience of the author and his colleagues that the
effort to do so is worthwhile when evaluated in terms of the additional
skills which can be engendered in the students by the broader range of
learning experiences resulting. Teaching mathematics as a service
subject is a challenging activity. The rewards of an innovative
approach both in personal satisfaction for the teacher and improved
learning for the student are considerable.
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DISCRETE MATHEMATICS: SOME PERSONAL THOUGHTS

J.H. van Lint, Department of Mathematics and Computing
Science, Technological University Eindhoven,
The Netherlands.

Contrary to what one would think, judging from the recent
stream of textbooks on "Discrete Mathematics for Computer Scientists",
this subject is not the union of all subjects in mathematics that are
not in the calculus course, but necessary for computer science. This
note will try to show what discrete mathematics really is.

In the description below we will assume that students have had some
calculus, linear algebra (maybe even elementary probability theory)
and know what mathematical reasoning is. A course in logic could
precede or follow the discrete mathematics; it is not part of it.

We will concentrate on principles, ideas, and the way of thinking which
are the essence of discrete mathematics. The following diagram

illustrates the comments below.

FINITE STRUCTURES

IDEAS OBJECTS
PExistence (Nec. Conditions) graphs
small blocks > large lattices
Construction =—» recursion groups
algebraic methodsq\ designs

generating functions codes

Counting <—% symmetry
1-1 mappings

LProperties

N

finite geometry

/,

coverings/packages

METHODS of description TOOLS

(0,1) matrices elementary number theory

coding & addressing schemes permutation groups

representations algebra

finite fields
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The main topics in the study of finite structures are existence
questions, constructions, counting, and also studying properties of
the objects in question.

One should stress the occurrence in many different situations of
similar principles,e.g. in construction one has:

a) using several small objects to construct one large one.

b) recursive constructions.

c) using algebraic techniques to construct combinatorial
objects.

In counting one uses:

a) generating functions (either ignoring convergence,
questions or cleverly using them),

b) symmetry principles (e.g. permutation groups),

c) 1-1 mappings of seemingly different objects onto
each other.

There are many combinatorial or just "finite" objects to study. Some
are mentioned in the diagram. The "tools" are themselves objects of
study in discrete mathematics,

In conveying ideas and ways of thinking the "methods of description"
are what is important. They are sometimes no more than bookkeeping
devices but one should try to teach how to use and choose them in such
a way that they are an aid in solving the problems one is interested
in. E.g. a clever way of numbering or addressing the vertices of a
graph can solve many questions on paths in this graph. The representa-
tion of a combinatorial object in other terms is often half of the
solution of the problem one is interested in.

Tools such as permutation groups play a role in questions of counting,
e.g. what does it mean to say that two objects are essentially the
same? Many parts of algebra (groups, rings, ideals, boolean algebra)
play a major réle. One of the most important is the theory of finite
fields. At present, many combinatorial objects can be constructed only
(with sometimes a few exceptions) using finite fields.

In DM courses one can use (from the start or eventually):

algorithms, principles of optimization and one should give many
—————p—— . TF otk canta
applications to a variety of subjects.

Where does one find applications,respectively fields of education,
requiring parts of the above? There are many, e.g.

statistics (quality control): designs

electrical eng. (communication): codes, boolean algebra
computer science: graphs, algorithms, (0,1)-matrices
business administration: graphs, algorithms

social sciences: graphs.
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Examples

Many of the subjects taught can be illustrated by examples
which most students find fascinating. These examples provide strong
motivation. Personally, I prefer giving them after the relevant
mathematics has been treated. I mention a few:

(i) Graph-addressing
In some systems a message goes through a telephone network
preceded by the address of the destination. At each vertex the message
is directed along an edge that brings it closer to the destination.
The problem of giving each vertex an address from <0,1,*™ , such
that distance of addresses equals distance in the graph (* does not
contribute) leads to very interesting problems.

(ii) Switching problems in communication.

(iii) Hadamard matrices were used to transmit the pictures of
Mars made by Mariner '69. It takes less than an hour to show how the
quality of the pictures was increased tremendously by the use of an
error-correcting code.

(iv) There are many interesting examples from quality control
etc. of the use of Latin Squares and Block Designs.

(v) Write once memories. (Exercise for the reader!)
Several memory systems for computers (punched cards,
compact disks) cannot be reused (a bit = 1 is a hole that is there
to stay). Can one design systems to reuse them nevertheless? Here is
an example that the students like very much, given after treating some-
thing that maybe looks useless.

One wishes to store one of the numbers 1 to 7 on four successive
occasions. This can be done with a 12-bit memory. On each occasion
three bits are used (to store 1 to 7 in binary). However, it can
also be done using only a seven-bit memory. One uses the so-called
Fano plane (7 points, 7 lines) as in the figure below:

b

1 6

(The set {2,6,7} 1is also a line!)

60



van Lint: Discrete Mathematics: some personal thoughts 61

On the first usage a number, say 5, is stored by punching a hole in
position 5. How to proceed on the next three times this memory is
used? The reader should try it.

(vi) Conference telephone calls
Electrical engineering students will easily understand the
requirements of an electrical network (without resistances) that makes
it possible to have a telephone conference with n persons. Each
person should be able to hear each of the others equally good (no
energy loss, etc. etc.). It takes only a few minutes to translate the
requirements into the following:

Is there an n by n matrix C for which all diagonal elements are
0 , all the others have the same absolute value (say they are 1)
and such that any two rows of C have inner product 0 ? 1In other
words:

ccl = (@-1) 1.

These matrices (called conference matrices (!)) occur in a chapter on
designs.

(vii) Search time for data stored in a computer.

We store data having n properties each of which can be
one of two kinds (yes = 1, no = 0) . The data is stored in batches
(or bins, = bin packing). E.g. if all data with first coordinate 0
is in one bin, this bin gets the name (0%**,,.*)". One can show that
in order to minimize worst-case search time the list of names of the
bins is a matrix of O0's, 1's and *'s such that each row (resp.
each column) has the same number of *'s , every column has some fixed
number of O0's (resp. 1's) and each sequence in {0,1}® belongs to
exactly one bin. Clearly a problem from design theory.

(viii) Winning in a football pool
In a football pool one can forecast the outcome of a number
of matches (often 13), namely:

0 = draw, 1 = home team wins, 2 = visiting team wins.

If all 13 forecasts are correct one gets first prize. To guarantee
this one needs 313 forecasts (expensive!).

Suppose one aims for second prize (i.e. one error). This can be
achieved easily by handing in 3!2 forecasts. However, it can in
effect be done by only 310 forecasts!! For this, one uses coding
theory, namely the perfect ternary Hamming code of length 13 .

(This idea is still not economically practical but there are practical
schemes designed by using these ideas.)
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(ix) Pictures of Mars (Mariner '69)

A picture is divided into
little squares (pixels).
For each pixel the degree
of blackness is measured
Blackness = 43 (in a scale of 0 - 63 ,

43 = 101011 in binary). So, this
N—e— degree is described by a
sequence of six 0's and
l 1's . The picture results
in millions of O0's and

1's to be transmitted to
<5t nt030%14, Ju, stinearth.,

Picture sequence - The transmitted message
is corrupted by noise.
The effect is that some
0's are interpreted as
1's (and vice versa).
As a result the quality
of the picture could
become extremely bad.

Suppose we are willing to take roughly flve times as long to transmit
the message. We could repeat each bit five times. This would lead to
a substantial improvement but nowhere near to what was achieved in
practice. The following solution was used:

A Hadamard matrix of order n is an n by n matrix H with entries
+1 such that HHT = nI . (These play an important rdle in Combin-
atorlcs, turn up qu1te often and are part of many courses). Construc-—
tion is easy if n is a power of 2 (induction).

Consider the 64 rows of the two matrices H and -H (H of order 32).
To send the number i , transmit row number i . The receiver takes
the received message x and calculates x HY . If there are N0 errors,
then the result has 3T coordinates O and one coordinate equal to
32 . Now, suppose there are t errors (t < 7) . The coordinate
that should be #32 still has absolute value 3 18 , all others
should be 0 but aren't. However, they have absolute value £ 14 .

So the correct value of the darkness can still be established.

In practice, it was extremely unlikely that a sequence of 32 signals
contained more than 7 errors. Result: beautiful pictures.
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MATHEMATICAL EDUCATION FOR ENGINEERING STUDENTS

Haruo MURAKAMI
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Kobe 658, Japan

Brief Review of Mathematical Education in Japan

There are at present 95 national, 36 provincial and 334 private
universities in Japan. Most of them have Engineering Faculties for
research into engineering and education of engineering students.
University education is for four years following on from six years
primary, three years middle school (junior high school) and another three
years high school (senior high school) education. There are also many
junior colleges with two years courses for subjects like English
literature, home economics, nursing and so on. For engineering students,
however, two years education is -considered to be too short, and there are
58 technical colleges offering five years education for middle school
graduates.

Normally, after completing compulsory education at the end of
middle school, one goes to an ordinary high school to study general
subjects like Japanese, English, social sciences, mathematics, natural
sciences such as physics, chemistry and biology for three years. There
are engineering, commercial and agricultural high schools as well. Those
who would like to learn specialized skills go to these vocational high
schools, but the demand is small and the number of these high schools is
not large. Altogether, over 95% of students go on to high school. High
school education often seems to be a part of compulsory education. On
graduating from high school, most students like to go on to higher
education, and the entrance examination to universities becomes very
competitive.

The mathematics subjects taught at ordinary high schools are as
follows: numbers and expressions, equations and inequalities, functions
such as quadratic, fractional and irrational functions, and plane
analytical geometry in the 1lst year. Algebra and geometry for second
year students contains conic sections, two dimensional vectors, 2 by 2
matrices, and 3 dimensional vectors and geometry. Second year students
also learn fundamental analysis, which contains series, functions such as
exponential, logarithmic and trigonometric functions, and introduction to
elementary calculus. Calculus and probability and statistics are given
to third year students. The former contains limits, differentiation and
its application, and integration and its application. The latter
contains permutation, combination, binomial theorem, probability,
probability distribution, descriptive statistics, and statistical
induction.
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Many high school students in Japan have to work very hard. Since
their main concern is to pass the entrance examination for universities,
they study how to attack and solve given problems, and usually do not
enjoy mathematics.

Mathematical Education in the First Half of a University Course

The main mathematical subjects taught in the first half of
university education are calculus and linear algebra. Teaching is done
by staff belonging to the Faculty of Liberal Arts, i.e. Junior College.
What other subjects should be taught is left to the lecturers of the
Faculty. Discrete mathematics such as set theory, abstract algebra and
mathematical structures are being introduced in some universities. One
thing which should be mentioned is that students do not usually work hard
in this period since they are almost sick of studying after all the hard
work preparing for the entrance examinations. Instead, they want to
enjoy university life. Another reason for their not studying hard in
this period is that they do not yet realize how important and useful
mathematics is for their later study.

Mathematical Education in the Latter Half of a University Course

Usually students go into senior college after one year and half or
two years of junior education. The length of time they spend in junior
or senior colleges depends on the university.

Standard subjects taught to senior engineering students are
functions of one complex variable, special functions such as Bessel
functions, ordinary and elementary partial differential equations,
numerical analysis and perhaps classical vector analysis. Discrete
mathematics containing mathematical logic, set theory and graph theory
are beginning to be introduced. Subjects like functional analysis,
advanced numerical analysis, probability and statistics, abstract algebra
and advanced partial differential equations are taught to first and
second year postgraduate students.

One special feature of the Japanese educational system for
engineering students is that most of the Engineering Faculties in
Japanese Universities have special departments, called Kyoutsuu Kouza
(servicing departments), to teach mathematics to engineering students.
The number of staff belonging to these departments differs from
university to university. Roughly speaking, there are more staff in
universities with more engineering students and fewer in those with fewer
students. Usually, there are staff in the pure mathematics department of
the Faculty of Science who are teaching their own pure mathematics
students aiming to be mathematicians or school teachers, although a large
number of them take jobs such as system engineers. Since staff belonging
to the Faculty of Science and the Faculty of Liberal Arts (junior
college) do not usually teach mathematics to senior engineering students,
responsibility for teaching mathematics to engineering students for the
latter half of their courses falls on the staff in the mathematics
servicing department in the Engineering Faculty. If the department does
not have enough staff to teach its own students, it usually employs
several part time lecturers from other neighboring universities.



MURAKAMI: Mathematical Education for Engineering Students 65

Survey of Staff Opinions

To investigate how to improve the mathematics education for
engineering students, a questionnaire was recently sent to all the staff
of the engineering faculty of the university where the author works and
also to staff of mathematics servicing departments in major universities.
Each questionnaire contained a list of mathematical subjects and a series
of boxes corresponding to each subject. The respondent was asked to mark
the boxes to indicate whether or not he or she thought the subject should
be taught, how it should be taught (i.e. putting stress on the acqui-
sition of knowledge and skills of mathematics or on the mathematical
thinking), by whom (i.e. by mathematicians or by engineers), and using
which methods. The methods suggested are the top down way of teaching in
which general theory is taught first and examples are explained by
applying the general theory, and the bottom up way of teaching in which
examples are given first and general theory is introduced by extracting
properties common to these the examples. Respondents were given space to
write free opinions.

The results obtained from this questionnaire showed first of all
how many staff considered that each of the selected subjects should be
taught. Essential, important, desirable and unnecessary subjects were
defined as those where more than 75%, 50 to 74%, 25 to 49% and less than
25% staff in the indicated field of engineering or servicing department
considered that the subject should be taught. Calculus, transformations,
and linear algebra subjects (with the exception of standard forms) were
regarded as essential or important by all the engineers and mathema-
ticians. Information theory and mathematical linguistics subjects were
largely seen as unnecessary, although a few of the subjects were seen as
desirable by chemical engineers and information and system engineers.
Discrete mathematics was generally seen as desirable, although there was
a large range of opinions according to the individual subject and
specialism of the respondent. Complex functions and differential
equations were evaluated very differently by different specialists. They
were generally seen as essential or important, with the exception of
chemical engineers and electrical and electronics engineers (although the
latter thought complex numbers and complex functions to be essential). A
similar pattern was observed for vector analysis and numerical analysis
subjects, although some subjects were considered to be important by all
specialists. Architectural and civil engineers considered every field of
numerical analysis to be essential. On the whole, functional analysis
and control theory were seen as desirable or unnecessary, although
mathematicians, electrical and electronics engineers, and information
and system engineers showed the most enthusiasm. Chemical engineers
thought that all the subjects in these fields were unnecessary, and
information and system engineers considered Hilbert spaces to be
essential. Control theory was also seen as either unnecessary or only
desirable. The one exception to this was that numerical control theory
was rated as important by chemical engineers. Probability and statistics
were seen as relatively important. As expected, information and system
engineers considered all the subjects in this field essential, and with
the exception of analysis of variance, so did architectural and civil
engineers. Mathematicians generally saw these subjects as important, as
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did the other engineers, although analysis of variation and statistical
estimation and tests were only desirable.

For the second question, how mathematics should be taught, the
results of the survey are as follows. Both engineers and mathematicians
in the servicing departments think stress should be on the acquisition of
skills and knowledge of mathematics in subjects like calculus, complex
variables, Fourier analysis, differential equations, vector analysis,
numerical analysis, and probability and statistics. The only subjects
where mathematical thinking should be stressed more than knowledge are
discrete mathematics and functional analysis. For linear algebra and
differential equations, different opinions were expressed for different
part of each subject. One interesting result here is that mathematicians
in the servicing departments are more convinced than engineers that
skills and knowledge are more important than mathematical thinking for
engineering students. (Different opinions would probably be heard if pure
mathematicians in the pure mathematics departments were surveyed.)

As for the question of whether mathematicians or engineers should
teach mathematics to engineering students, the result of the survey is a
little different from what was expected. Since most of our engineering
staff tend to consider themselves as those not having enough mathematical
knowledge, it is understandable that they responded that mathematicians
should teach most of the subjects. The result we did not expect is that
a fairly large number of mathematicians in the servicing departments
responded that some areas of applied mathematics would be better taught
by engineers. Both engineers and mathematicians responded that calculus,
linear algebra, discrete mathematics, complex functions, Fourier
analysis, differential equations, vector analysis and functional analysis
should be taught by mathematicians, and numerical analysis should be
taught by engineers. The only difference is about probability and
statistics and mathematical control theory. Engineers thought these
subjects could be better taught by engineers, whereas mathematicians
thought the other way round.

The results obtained from the question on the method of teaching
show that both engineering staff and mathematicians in the servicing
departments consider that both the top down and bottom up methods
suggested should be employed, depending upon the subject being taught. It
seems to be natural that they think the top down method is better for
teaching fundamental subjects like calculus or theoretical subjects like
functional analysis, and the bottom up method is better for teaching
applied or practical mathematics such as numerical analysis.

Improving Mathematical Education for Engineering Students

A basic question may be raised here. Is mathematics for engineering
students essentially different from that for pure math major students ?
Should the way to teach mathematics to engineering students be different
from that to pure math students ? Mathematics for engineering students
should not be very different from that to math major students. One might
say that mathematics for engineering students is after all mathematics.
For the second question also, one may answer that there should not be
much difference in teaching ways. But one should be aware of the fact
that pure math students are those who are already attracted or enchanted
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by the beauty of mathematics, and they are willing to study mathematics
as their major subject, whereas engineering students think of mathematics
as merely a tool to use for their engineering studies.

As mentioned above, engineering students do not realize the
importance and usefulness of mathematics while they are studying
calculus, linear algebra and so on. It is hard for them to appreciate the
necessity of studying it. Later, when they need mathematics, they find it
difficult to catch up, either because they are too busy with studying
proper engineering subjects or because of their lack of fundamental
knowledge of mathematics.

How can we solve this problem ? One good solution for this may be
to give the students motivation to study. How can they be given
motivation ? Teach with examples. For instance, consider the way that
ordinary differential equations are taught to 3rd year engineering
students at Kobe University. First of all, they are given an example
from population dynamics. The equation given first is

dy

dx .

As is well known, this simple Malthus model is not very good at all.
They are next introduced to the famous Verhulst model:

dy

=ax (k - x)
dx

By giving this model, the lecturer can talk about asymptotic
behaviour of a solution, equilibrium points, and stability of a solution.
Solution curves can either be drawn by hand or shown by using a computer
display in the classroom.

Then, a small parameter c is added.

dy

=ax (k -x)-c
dx

This parameter ¢ may correspond to capturing animals in Africa, or to
deforestation by human beings. The parameter c¢ is then increased a
little. Here the lecturer is in a position to be able to talk about the
structural stability. The parameter can then be increased a little more.
If the parameter c is increased still further, then, all of sudden, the
structural stability is lost, and students realize that all the solution
curves drop away from the top left to the bottom right. The lecturer can
then explain what environmental capacity means to us, and how easily we
can destroy our world.

This example is very useful if the lecture is for general students.
If all the students are engineering students, it may be better to pick
examples from engineering which are equally as good. If the student is
in the electrical engineering department, it is best to take examples
from electrical engineering. Teaching mathematics with examples like
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these will c.nvince the students that mathematics is useful and
important. To do this, the instructor should know the engineering as well
as the mathematics. Does this mean that mathematics should be taught by
engineers ? Although it is not necessarily true that mathematicians can
teach mathematics better than engineers, it is certain that the more
advances are made in the engineering, especially in areas dealing with
computers, the more sophisticated mathematics and mathematical thinking
will be needed, and mathematicians can definitely better at teaching them
and conveying a feeling for mathematics to students. So, perhaps the
subjects should be taught by mathematicians with the help of engineers in
deciding what examples to pick, in what way to teach, how to construct
the teaching method, and so on.

When mathematics is taught by mathematicians they tend to teach it
with too much stress on the mathematical rigorousness or teach subjects
which are interesting only from the theoretical point of view. Sometimes
they try to make students fully understand things such as epsilon delta
arguments or how to complete an incomplete infinite dimensional metric
space. These arguments would be necessary for pure mathematics students
but not for engineering students. On the other hand, engineering
students should be told of the existence of a nowhere differentiable
continuous function, although giving an example with the full proof may
not be necessary. What should be taught to engineering students is, in
addition to the mathematical knowledge, mathematical thinking, a feeling
for mathematics and mathematical sense or "a sense of mathematics" like
"a sense of humour". If mathematics is taught entirely by engineers, it
may be hard to convey those essentials to students. Thus fundamental
mathematics and abstract mathematical subjects are probably best taught
by mathematicians in a well prepared, well organized and appropriate way
for engineering students with the help of engineers.

Considering the method of teaching, the best way is perhaps to give
a few typical examples to motivate the students and then extract
properties common to these examples to introduce a general theory, and
then, after proving theorems, more examples of applications should be
given to show how powerful the theory is. This combines both bottom up
and top down methods.

Influence of Computers

The effective use of new technology must be considered. Once upon
a time, man used only his own strength, but he then learned to use the
strength of domestic animals such as horses to do his labour. Later,
engines were developed which were hundreds or thousands of times more
powerful than the animals. These engines now routinely do work that
would be nearly impossible by manpower alone. Life without these
machines is virtually unthinkable.

In the same way, man has also learned to use technology for his
intellectual work. Computers have been developed which can process
information hundreds or thousands of times faster than the human brain,
and routinely do work that would be nearly impossible by brainpower
alone. There are still many areas where computers cannot replace the
power of human thought, but they are now becoming essential tools, and
life without them is nearly unthinkable. Think of the fact that the
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contents of several volumes of an encyclopedia can be stored with dynamic
pictures in one compact disk. Mathematics education must be changed to
use the benefits gained from the progress of computers. Database and
artificial intelligence techniques such as knowledge engineering will be
of great help for education. Numerical analysis in its present form is
already impossible without using a computer.

At the very least, we can install a microcomputer in the classroom
with a big screen to demonstrate graphically the locus of functions,
solution curves of differential equations and so on [1]. This can be
very effective. Afterwards, we can ask students to do their assignments
either by using their own personal computers or by using computing
facilities provided by the university.

A computer algebra system can be employed as a very powerful tool
in the mathematics education. Quite recently, the symbolic manipulation
system Reduce was implemented to run on MS-DOS so it can be used on
personal computers. Until now, muMATH has been used on micros, but it
was thought that bigger machines were needed for better computer algebra
systems such as MACSYMA or Reduce. Now Reduce is available on micros,
and soon there will be reasonably good symbolic manipulation systems on
pocket computers. In a few years time, engineering students will carry
computer algebra systems in their pockets, like they carried slide rules
thirty years ago. Life has changed, and so the subjects which should be
taught must also be changed. How to integrate rational functions by
using partial fractions is still taught, but teaching subjects of this
sort may no longer be necessary. This has already been discussed in the
ICMI study [2] and elsewhere [3], so it will not be repeated here.

References

1 Murakami, H. (1985). A View of Computer Assisted Mathematical
Instruction with Particular Reference to Simulation and Use
of Graphics in Analysis Courses, Invited Lecture, Proc. 3rd
Southeast Asia Conference on Mathematical Education

2 Murakami, H. & Hata, M. (1986) Mathematical Education in the Computer
Age, The Influence of Computers and Informatics on Mathema-
tics and its Teaching, edited by A.G Howson and J.-P. Kahane,
ICMI Study Series, Cambridge University Press, pp.85-94

3 Murakami, M. Hata & T. Yamaguchi (1987), A New Way of Teaching
Mathematics Using Computer Algebra Systems, Microcomputers in
Secondary Education, Elsevier Science Publishers B. V. North
Holland pp.395-400

69



SOME REFLECTIONS ABOUT THE TEACHING OF MATHEMATICS IN ENGINEERING SCHOOLS

E. ROUBINE
(Retired) Professor at University of Paris and Ecole
Supérieure d'Electricité - France

This paper presents a few reflections resulting from a long
experience teaching at the University and Engineering schools (Ecole
Polytechnique, Ecole Supérieure d'Electricité) and industrial consul-
ting. These reflections will probably appear unconventional and, may
be, a little bit provocative. We shall therefore first indicate the
limits of this presentation : it is strictly limited to the French sys-
tem of education and to the only technical field familiar to the author,
that is electronics in its modern day meaning, including the usual
electronics of components and circuits, communications and radio and
a large part of computer science and control theory. These correspond,
for instance, to the scope of the French "Société des ingénieurs
8lectriciens et électroniciens'or the American I.E.E.E.

Electronics is a field where education presents an espe-
cially acute problem in that the field has an amazing multiplicity,
an accelerating evolution and resorts to an extensive mathematical
background as signal theory or electromagnetics.

Choosing which branches of mathematics to teach becomes a
real headache if one intends to cater for short term as well as for
medium and long term needs.

The short term :

The short term is essentially concerned, within the Univer-
sity and Engineering schools, with mathematics that can be of use to
the teaching of other fields and to the beginning engineer. At least
in the French system the reality is often disappointing between the
following extremes.

One extreme is the case of a curriculum corresponding clo-
sely to the often conservative demands of the physics or technical
faculty : the everlasting special functions, operational calculus,...,
many recipes, a '"tool-box" mathematics rather than mathematics as a
tool.

This education greatly suffers from the absence of important
pedagogical simplifications brought by theories largely taught
elsewhere (Lebesgue integral, Hilbert spaces, Schwartz distributions,
exterior calculus,...).

At the other extreme, communication between teachers
becomes so difficult or idle that it results in a disconnection where the
mathematician ends up in a separate world and a situation usually
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considered as absurd.

The medium and the long terms :

The real problem is as everyone knows, what mathematics to
teach to the aspiring engineer (or physicist) which he will need in
his professional life in a 5 to 10 years perspective (medium term).
Beyond (long term) any forward planning is often bound to be defeated.

In his day to day activity, even when it is technical, the
electronical engineer apparently needs only very little mathematics.
The slide rule of yesterday or today's pocket calculator seem to be
largely sufficient. In fact, especially in research areas, the compo-
nent/system dialectics brings in a distinction between "components-
engineers", more inclined towards physics, and "systems-engineers',
who lean more towards calculus and whose mind is more closely orien-
ted towards mathematical structuralism.

In the area of development, one cannot ignore the modifi-
cations introduced by C.A.D. For example, the design of V.L.S.I.
components is faced with hard algorithmic problems which is the
realm of the systems-engineer.

The relation of the engineer with mathematics is elsewhere.
An important part of the engineer's activity is permanent self-improvement
through the reading of technical publications and participation in
conferences. This requires in many cases a fairly strong mathematical
background. The authors are young and use a modern language. It is
reasonable to consider that the engineer needs before all mathematics
as a communication language, whereas it is generally admitted that he
should be taught mathematics as a tool. By the way one can emphasize
the fact that a good mathematical culture as very useful even if the
engineer does nothing but to use, in the computer, the results of pu-
blished papers. Calculations can be shortened and frequent mistakes
avoided.

Applied mathematics.

A common perception is that mathematics for the engineer is
the so-called applied mathematics. 0ld books covered fields largely
forgotten now, such as descriptive geometry, nomography, graphical
statics. Today numerical analysis, probability and statistics are
frequently taught as applied mathematics even if the first is
grounded on functional analysis and the second on measure and integra-
tion.

In fast evolutive techniques, like electronics, it is not
easy to determine the contents and the limits of a specific curricumum.
One merely applies '"pure" mathematics to the problems at hand. Who
could have foreseen the use of Galois fields in coding or, in other
domains, the use of number theory in cryptography, of algebraic
topology in the chemistry of large molecules? Even more striking is the
example of linear integral equations of first kind. They were of
little interest to mathematicians. The conditions under which they
can be solved are restrictive, but, above all, they come into play in
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ill-posed problems as defined by Hadamard, i.e. problems whose solu-
tion is extremely sensitive to fluctuations of the data (such as
numerical approximation or experimental noise). This corresponds in
particular to the so-called inverse problems-to go back from effects
to causes- which are extremely important in numerous areas : geophy-
sics, radiology, optics, electromagnetics, metrology,... The pressing
needs of the users have thus led mathematicians to come back to

these equations and technically acceptable methods of solution have
been proposed.

As a last example one could mention, among the fashionable
theories, those referred to as of maximum entropy, used to solve
problems of spectral estimation and extrapolation, commonly used in
signal theory ad image processing (antennas, seismology, radiology,
tomography, N.M.R., radioastronomy,...).

It is interesting to note, in this respect, one of the
salient aspects of modern electronics. The use of more and more
elaborate (at least to the engineer) mathematics is made possible by
technical advances, microelectronics providing the circuits that can
process increasingly faster larger and larger amount of data. Data
processing has thus largely invaded experimental physiecs and most
contemporary techniques. An example is the modern viewpoint on noise
reduction. Nowadays people deal with clever coding schemes, i.e. by
mathematical craft in connection with microelectronics. Space communi-
cation, videodiscs, compact discs are among numerous applications.

All in all, one can observe that how to apply mathematics
to ever new problems is, more and more, a matter for true professionals,
something generally not addressed in Engineering schools. One could
say that, at least in the field of electronics, there is no longer
applied mathematics but mathematicians whom the engineer engaged in
research or development will eventually consult.

One is led to reshuffle some accepted views : formal
mathematics used as a communication tool by the ordinary engineer, but
transformed into an actual tool by a professional mathematician, pos-
sibly the engineer himself if he has the taste and the talent. It
should be noted that many advances in electromagnetics, signal theory,
information theory, have been achieved by mathematicians (compare
the Nobel prizes in economics).

The teaching of mathematics :

The above development tends to show the usefulness of a
sufficiently high-level mathematical culture, so that the engineer
can read professional literature and discuss with the mathematician he
consults. Hence the idea that mathematics, even as a service subject,
taught at the University or in Schools should be essentially used,
in the medium term, as a communication language.

This teaching will be part of the basic training, and it is
not absurd to see it as more or less "disconnected" from other
branches which take advantage of the initial training of the students.
In the French educational system, most of the students of the
engineering schools originate from excellent preparatory classes
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("Mathématiques spéciales").

These considerations would lead to a somewhat reduced
basic course, modern and of high level, consisting essentially of
functional analysis (where numerical analysis itself has its founda-
tions, e.g. the fashionable finite elements method) and probability
theory.

The other professors can spend some lectures on review
of their own mathematics, with whatever language and notations are
best suited. In fact, this is often the situation. Calculus of varia-
tions is presented in control theory, a part of probability and
statistics, including random functions and detection theory are con-
veniently taught with signal theory. However the case of finite
mathematics is to be considered apart. Even if connected to a computer
science or a communication course it is today one of the major topics
to be taught.

The notion of a fairly autonomous course with the level
of abstraction corresponding to an advanced content and to a modern
presentation is not easily adopted by the college administration, the
faculty and, to a lesser extent, the students.

A word regarding abstraction in the so-called modern
mathematics and the permanent attacks from an older generation of
engineers and experimental physicists. One should bear in mind that
this is only a matter of epistemology. "Modern" mathematics is only
apparently more abstract than older mathematics. The approach of
mathematics as a service is not to practise some "concrete" mathema-
tics but to substitute an abstract model for the concrete physical
world, a model for which the language of mathematics makes sense.
This is not a modern idea. The aim of applied mathematics is to find
appropriate models for the real world.

Lastly, we would like to present efficiency arguments of
a psycho-pedagogical nature. The.Montessori method (after the famous
Italian educator) proposed, some 75 years ago, to bend children's
education according to their sensitive periods, i.e. their areas of
interest and facility. In a similar way one can consider that
twenty-year old brains are more amenable to abstract notions and that
this should be exploited. At 30 or 40 to learn new mathematics "in
abstracto" is arduous as opposed to experimental physics or even more
technical fields which require more maturity in the understanding of
reality. One could think of such mathematics as an investment made
with the optimal return. However it is to be recalled that in continu-
ing education where people have a solid professional experience they
are highly motivated to handle mathematics as a service. Nevertheless,
do not forget the law of the French psychologist Th. Ribot (1839-1916)
concerning the gradual degradation of the memorization duration with
the age.

Computers.

ki el L) . .

The importance of computers is too widely known to be
brought up again, except to stress the following evolution in the
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engineering world. Computers are so powerful that one is led to resort
to more and more complex theories as soon as they are applicable. The
example of integral equations is a case in point. They used to appear
only in very advanced curricula. Fredholm's theory, originating in
problems of potential theory, was not easily solvable through numerical
methods. It is of interest to mechanical or electrical engineers and
has already been used by Poincaré for antennas. With the computer,
integral equations are now familiar to eventual users. One could men-
tion some research in electromagnetic diffraction with singular
integral equations, finite parts and distributions processed by
computer.

An epilogue by way of conclusion.

Are discussions about pure or applied mathematics, mathe-
matics as a culture factor or a service, ... so necessary? Every one
does his best in his sphere. This brings back to me a short story
heard from the French physicist Abragam. In a circus there was a
funambulist on a bicycle in equilibrium on a tightrope. He had a
violin on which he tried to play the Kreutzer Sonata. Then someone in
the public whispered in his neighbour's ear: "Well, last month I heard
Yehudi Menuhin in the same piece, and he was very much better".




TEACHING MATHEMATICS AS A SERVICE SUBJECT

M.J. Siegel
Mathematics Department, Towson State University,
Towson, Maryland 21204, USA

Mathematics has served science and commerce for thousands of
years. Yet the attraction of mathematics to mathematicians has
frequently been the pure beauty of the subject without regard for its
applications. Hence, for many teachers who first found mathematics
magnetic for its own sake, the acts of teaching and having to justify
the service function of their courses is often a challenge. Even now,
many American graduate students in mathematics are exposed only to the
relationship of mathematics to physics. Their graduate training does
not require even a nodding acquaintance with statistics, operations
(operational) research, model building, numerical analysis or simulation
techniques. Since those students who are trained in the most abstract
mathematics are the most likely to be teaching in the nation’s colleges
and universities, American undergraduates face a ridiculous irrelevancy
in the mathematics classroom.

In most American colleges and universities today incoming students can
choose a first mathematics course from

remedial mathematics - intermediate algebra

finite mathematics - usually for business students

liberal arts mathematics - "math for poets"

precalculus - functions (algebraic and transcendental)

technical mathematics - for the trades (two year

colleges)
statistics - for social science, business, economics
and health sciences

short calculus - for non math and science majors

calculus for mathematics, science and engineering-
three or four semester sequence in which
advanced placement is possible

® discrete mathematics - for computer science and

mathematics students

¢ o000

In the US in 1980 of all students registered in elementary (but not
remedial) courses at the level of calculus or below, only about 30% were
enrolled in the calculus for mathematics, science and engineering
(Conference Board of the Mathematical Sciences 1981). The overwhelming
majority of students in beginning mathematics courses are enrolled in
other service courses required by their choice of major. Proper
placement in courses (by type and level) is particularly important since
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the mathematics course is used as a filter (implicitly or explicitly) in
many disciplines.

An awareness of the problems being faced by mathematical educators in
the 1980°’s led to the convening of two important conferences. Both of
these were funded by the Alfred P. Sloan Foundation and became a
springboard for many of the projects which will be mentioned here. The
first conference, held at Williams College (Massachusetts) in the summer
of 1982, featured talks on the first two years of college mathematics.
The proceedings, published by Springer-Verlag (Ralston & Young 1983),
make for excellent reading. Mathematics as a service course is treated
in at least half of the papers. The second conference, held in the
summer of 1984, was the first national meeting on mathematics in the two
year colleges. Two year colleges in the US have several missions.

Among them are the education of technical warkers, who generally go
directly into the work force, and the preparation of the more
academically inclined who will enter four year colleges and universities
to complete their education. The Springer-Verlag publication of those
proceedings (Albers et al 1985) is similarly useful to those who are
interested in the improvement of mathematics education.

The Mathematical Association of America (MAA) has a standing committee
on service courses (of which I am a member). 1Its purpose is to explore
for the American mathematical community the mathematical needs of other
disciplines. It is revealing to note that this committee is a
subcommittee of two of the most active committees of the MAA - the
Committee on the Undergraduate Program in Mathematics (CUPM) and the
Committee on the Teaching of Undergraduate Mathematics (CTUM). The
first of the parent committees recommends curriculum, while the second
attempts to aid in the effective delivery of the material to the
student. These two aspects of mathematical education enter into all the
deliberations of the Committee on Service Courses. Its most recent
project was a three year study on the need for discrete mathematics in
the first two years of the (American) undergraduate mathematics
curriculum. I chaired the panel which recently published a 104 page
report, available for a small charge from the MAA. Supported by the
Alfred P. Sloan Foundation, the panel was made up of representatives of
the computer science community, engineering schools and applied and pure
mathematicians.

The study grew out of the dissatisfaction of many outspoken computer
science educators who felt that the offerings of mathematics departments
to computer science students were inappropriate in content and in
timing. Of course, there was a forceful reaction by mathematicians who
strongly resented the attack on the calculus - the mainstay of the
freshman mathematics diet. What was revealed by our panel’s research
was that engineering faculty, chemists, physicists and biologists were
dissatisfied with the calculus as it was being taught and begged for
more discrete methods and techniques. They said that students lacked
conceptual mastery of the subject and could not apply what they had
learned. They asked that the mathematics of the first two years be more
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integrated - the continuous and the discrete presented side by side to
show the relationship and effectiveness of the two. Many asked that
difference equations and recurrence relations with a heavy emphasis on
techniques of problem solving and the use of the computer be included in
the standard curriculum.

It became quite clear that what had begun as a study into the needs of
computer science students had quickly evolved into a critical review of
the entire elementary mathematics curriculum traditionally prescribed
for all science students. The panel was not prepared to recommend
revolution but stongly urged that discrete mathematics become a part of
the first two years’ offerings and that, to allow room for it, there
should be careful attention paid to the restructuring of the traditional
three semester calculus sequence. Widespread dissatisfaction with the
mathematical maturity and skill of students who had gone through the
traditional courses indicated to the committee that something was amiss.
We had many debates as to whether it was the material, or the way it was
taught; whether it was the student or the system. The calculus books
had gotten easier since the 1960’s. The students were getting less and
less out of a more elementary syllabus. Our mission was to make
recommendations about discrete mathematics and yet we felt that we
needed to know more about how peocple learn and how abstract ideas,
generalizations, and algorithmic analysis should be taught. We
submitted the report with some misgivings, knowing that with so much
more to learn about our failures with teaching calculus (more than 200
years in the maturation), it was presumptuous to pretend we knew how to
introduce beginners to discrete mathematics. The Committee on Discrete
Mathematics in the First Two Years (Report 1986) recommended that:

1. Discrete mathematics should be part of the first two years
of the standard mathematics curriculum at all colleges and
universities.

2. Discrete mathematics should be taught at the intellectual
level of calculus.

3. Discrete mathematics courses should be one year courses which
may be taken independently of the calculus.

4, The primary themes of discrete mathematics courses should be
the notions of proof, recursion, induction, modeling and
algorithmic thinking.

5. The topics to be covered are less important than the
acquisition of mathematical maturity and of skills in using
abstraction and generalization.

6. Discrete mathematics should be distinguished from finite
mathematics, which as it is now most often taught might be
characterized as baby linear algebra and some other topics
for students not in the "hard" sciences.
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7. Discrete mathematics should be taught by mathematicians.

8. All students in the sciences and engineering should be
required to take some discrete mathematics as undergraduates.
Mathematics majors should be required to take at least one
course in discrete mathematics. N

9. Serious attention should be paid to the teaching of the
calculus. Integration of discrete methods with the calculus
and the use of symbolic manipulators should be considered.

10. Secondary schools should introduce many of the ideas of
discrete mathematics into the curriculum to help students
improve their problem-solving skills and to prepare them for
college mathematics.

In January, 1986 a conference on calculus was convened in New Orleans,
LA. The conference grew out of the observation by many mathematicians
that calculus courses had grown to be ineffectual and irrelevant. The
discrete mathematics study had shown that this was a widespread belief.
Conference participants were divided into three workshops: Curriculum,
Instruction, and Implementation. The report from the conference, Toward
8 Lean and Lively Calculus, is available from the MAA as Number 6 in the
MAA Note Series. The recommendations of the conference are sweeping,
covering major changes in the number of topics in the syllabus (a
reduction with more time allowed for non-standard, thought-provoking
problems), more applications, heavier reliance on computer software and
computer-based instruction, suggestions for small-group and discussion
sessions with smaller classes and new textbooks. Discrete methods and
numerical techniques are considered central. Since one-third of the
conference was focussed on instruction, the final report contains a
large section on what we know about teaching and learning mathematics
and how to improve both.

In recognition of the importance of the issues brought to the fore in
the work of the discrete mathematics and the calculus groups, a CUPM
Subcommittee on the First Two Years of College Mathematics has been
formed. That committee will concentrate on courses beginning at the
discrete mathematics - calculus level. Among the tasks of the committee
is the identification of the subject matter and skills that are
important for the students at this level. What are the proper sequences
of courses for students in various majors? What is the place of
geometry (planar, analytic, spatial) in the curriculum? What is the
role of computers in instruction at this level? Does calculus provide
the best foundation for students in the disciplines we serve? How can
we attract students with the highest potential to continue to study
mathematics? How can we best write a two year syllabus to combine
continuous and discrete mathematics for students in the mathematical
sciences? How can we apply what we know about cognition to the
construction of syllabi?
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I would like to share with you some of the information now available to
the Committee on Service Courses of the MAA. We have been trying over
the last few years to be in direct contact with the professional
organizations of the disciplines which we perceive to be the heaviest
users of mathematics courses. From some of the disciplines we get
enormously enthusiastic response and from others practically nothing.
Each member of the committee has adopted a discipline. Since mine was
computer science, I got involved with the discrete mathematics project.
Our most useful replies from other fields have been from biologists,
chemists and the engineers.

Our survey of sixty engineering departments has found that, in general,
most of the departments were pleased with the quality of the mathematics
service courses offered to their students and reported that almost all
mathematics departments were cooperative and willing to discuss mutual
concerns. They expressed some dissatisfaction about the amount of
mathematics taken by engineering students. That engineering students do
not elect to take any more than the bare minimum in mathematics may be a
reflection of some of the respondents’ observation that mathematicians
do not seem to have a favorable attitude toward the engineering
students. There was, again, the plea that theory must be taught so that
the student will be able to apply the concepts. Changes in the notation
from mathematics to engineering courses cause students a great deal of
confusion. That is because there seems to be a lack of retention of the
basic cognitive scope of the mathematics courses. It was suggested that
we might look at each other’s textbooks to see how our students have to
cope with different approaches. Also revealed in the survey was a
dissatisfaction with the knowledge and ability of students to handle
geometric ideas (analytic, plane and spatial). There was a suggestion
that we put more emphasis on visualization. The low level of
preparation in most American high schools was mentioned by almost
everyone. Mathematics departments at the university level are accused
of not correcting the deficiencies. With respect to what should be
taught besides the standard calculus and differential equations, many
mentioned complex numbers, numerical methods, discrete mathematics,
geometry and linear algebra. To get a copy of the report, contact
Professor David Ballew, Western Illinois University, Maconb, IL 61455.

What do chemists need in mathematics? Harvey Bent, Chairperson of the
American Chemical Society’s Committee on Professional Training
recommends that chemistry students know more discrete mathematics, more
linear algebra, more statistics, but - and he stresses this - they
should be able to use the mathematics that they have already been
exposed to. They may have been taught the mechanics of calculus, but
cannot handle applied problems even after several semesters of calculus.
He recommends to his students that they take an engineering mathematics
course so that they will have the experience of actually doing lots of
applied problems. The American Chemical Society(ACS) has a Division of
Computers in Chemistry. 1In a course they recommend for undergraduates
they include topics such as capabilities of digital computers, accuracy
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and precision, significance of numbers, error accumulation,
floating-point number systems and design of algorithms. A large portion
of the syllabus is devoted to numerical methods: integration, solution
of differential equations, matrix manipulations, solutions of linear
equations, combinatorics, pseudo-random number generation for
Monte-Carlo calculations, modeling and simulation, quantum chemistry,
reaction dynamics and statistical mechanics. There are other topics in
data collection and experimental design which involve both statistical
and mathematical notions (Fourier transforms and convolutions, etc.).

Computer Applications in Chemistry is a junior- senior level course that
has been taught at The Pennsylvania State University for ten years
already. All students are required to know FORTRAN. The topics are
similar to the ACS course just described. In particular, there is a
major emphasis on numerical algorithms (similar to the content of a
mathematical numerical analysis course) including curve fitting,
function generation, numerical integration and solution of differential
equations. A section on eigenanalysis: finding the characteristic
polynomial, solving for its roots and solving sets of linear equations
for eigenvectors. Monte Carlo methods and Fourier transform methods are
also in the syllabus. An interesting nonnumerical topic that is
included is graph theory. The purpose is to show that the connection
tables have a mathematically rigorous underpinning and that graph theory
theorems can be profitably exploited in chemistry. [A connection table
involves representing a structure by a matrix or set of matrices where
the entries represent bonds or atom types.] Examples of the use of the
graph isomorphism theorems abound in the handling of chemical structure
information handling and substructure searching. Optimization methods
are discussed including the simplex method applied to gas chromatography
and flame spectroscopy. There is some attention paid to pattern
recognition, artifical intelligence and information retrieval.

Professor Peter Lykos of the Illinois Institute of Technology and an
active member of the ACS Committee on Professional Training spent
several hours with the MAA Service Course committee. He pointed out
that the traditional structure of the chemistry curriculum has four
emphases; physical, organic, inorganic and analytical. Although we
associate mathematical methods primarily with physical and analytical
chemistry, there are important ways in which mathematics is used in
organic and inarganic chemistry.
He stressed that:

1. Students need to learn to think mathematically and

learn to handle notions of symmetry, probability etc.

2. There has been a resurgence of classical mechanics and
solid geometry with important applications.

Beyond the standard calculus, he recommended training include
instruction in

1. error assessment and propogation
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ordinary and partial differential equations
linear algebra, eigenvalues

probability and regression

transforms (especially Fourier)

. symmetry (including group theory)

. optimization (calculus of variations and linear
programming).

NouwbFwmn

The biologists in the US have a consortium type of organization, the
Federation of American Societies for Experimental Bioclogy (FASEB). At
the present time, Mathematics Professor Maynard Thompson of Indiana
University has been working on compiling the results of a survey done by
the Service Course committee in cooperation with FASEB. The
questionnaire, which has been distributed to biologists, biochemists,
pathologists, nutritionists, physiologists, pharmacologists and
immunologists through their individual societies, asks for information
as to how much time students have within their program for the study of
mathematics, statistics and computing. To determine where emphasis
should be placed, part II of the survey contains a list of various
topics (under headings of precalculus, calculus, differential and
difference equations, linear algebra, probability and statistics and
computing) which we have asked the respondent to rate as very important,
somewhat important or unimportant. My own preliminary observations of
the survey results reveal that the most serious mathematical needs were
listed as first year calculus with series, some differential equations,
with a heavy emphasis on applied statistics and probability along with a
working knowledge of at least one higher level programming language,
files and file manipulation, data acquisition and data reduction and
computer graphics and simulation.. My own observations of the kinds of
questions asked by some of my own students who major in biology lead me
to believe that there is also a need for mathematical modeling,
simulation techniques and optimization methods.We are still making
contact with professianal business schools and schools of health,
nursing and medicine. In the US, architecture schools require little or
no mathematics and do not seem to want to change; they rely heavily on
teaching their own computer graphics techniques. We know from our own
observations that social scientists need to know a fair amount of
statistics, probability and modeling. The techniques in mathematical
modeling in social science might be categorized as linear programming
(game theory), recursive functions, matrix methods and eigenvalue
problems at the lowest level. The course that I teach in mathematical
modeling frequently attracts a few social science majors so I do lots of
demography, arms race models, games, graph theory, harvesting resource
models, Leslie models, Markov chains, linear programming and simulation.
There is a lot of good mathematics in the analysis of these models; they
require calculus, linear algebra, differential and/or difference
equations, probability, computing and algorithm analysis, error
analysis, statistics and graph theory.

The most pervasive comment we get from all of our contacts, both within
our own discipline and outside, is that our students seem to pass our
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courses but cannot DO anything. I would like to concentrate on that for
a moment for up to now I have discussed only what should be taught. But
a student is not a vessel; we cannot just pour it in. It is wrong to
think of knowledge as something we can transmit like a letter from
teacher to pupil. Piaget’s investigations and more recent research in
cognitive science show that ideas are constructed out of action in an
appropriate experience. Are we providing such experiences faor our
students? Are we guilty, as Sherman Stein (1985) says of entering into
a

"secret pact between the teacher and the student: the

teacher will not ask any question that will might

reveal the student’s ignorance, and the student, in

turn, will not ask any question that may delay the

class"?

Our need to learn more about cognitive science is acute. Some of the
results of recent research are useful and, yet somewhat discouraging.
Studies (Lochhead 1983) have shown that college students who had had a
semester or two of calculus still could not express relationships
between variables: Only 27% could answer this question correctly:

Write an equation using the variables C and S to
represent the following statement: "At Mindy’s
restaurant, for every four pecple who order
cheesecake, there are 5 people who order strudel."
Let C represent the number of cheesecakes and S
represent the number of strudels ordered.

To show students the power and richness of mathematics we have a
responsibility to help them to gain conceptual mastery of the basic
ideas with a concommitant flexibility in the applications of these
ideas. In the face of their misconceptions, which have been shown to be
very difficult to change, we may be attempting the impossible. We
should be presenting problem-solving situations which require
resourcefulness and exploration. While there is always a place for
problems requiring the straight-forward use of the appropriate formula,
students should be taught a variety of techniques from which they can
choose. In all of this, the need for small classes, contact among
students and between faculty and students is an essential part. At most
universities in the US, Freshman Composition is a required English
course and sections are limited to about 15 students with personal
attention granted to each enrollee. We have been remiss in not
demanding the same personal contact with our students, for the ideas we
teach are no less important and our students might be far more ignorant
of our subject to begin with. To facilitate the attainment of our lofty
objectives, the best we can do is to help the student in:

1. learning to communicate mathematics
2. learning to do mathematics

3. learning to relate to mathematics
4, learning to learn mathematics.
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My contention is that in the absence of substantial knowledge about
cognitive processes and the ways in which people learn mathematics,
those of us who have to teach beginning students must find a way to use
the little of what is known and our own good sense to improve
instruction.

1.LEARNING TO COMMUNICATE

Students communicate fluently in their native language when
they get to the university. A mathematician may therefore assume that
students can listen, read, write and speak in the mathematics classroom.
But we forget that to most students mathematics is a new language. The
language is a strange and difficult one. We use words differently in
mathematics than in general speech. We use notation that is full of
meaning, expressible in whole sentences of real talk. We speak quickly,
we have accents, we write sloppily (was that a subscript or a multiplier
or an exponent?). We know how we feel we have truly understood a concept
after we explain it to others. Do we allow students that chance to
understand by active participation and communication?

The mathematics classroom is in many ways like a language classroom.
Skill in oral and written communication needs to be taught. Effective
listening is perhaps the most difficult. Students do not know how to
listen to what we say. Many of them do not realize the difference or
likenesses among

if p, then g

if q, then p

q, if p

p only if q

p if and only if q.

The student needs to hear and understand a lot at once. We should take
the time to point out what is the hypothesis and what is the conclusion.
A little lesson in propositional calculus along with the theorem
statement goes a long way to clear things up. There is good reason to
spend some time on the predicate calculus. Students do not always know
what we mean when we say "for all ... there exists" aor "there exists ...
for all". The £ - & definition of the limit is a particularly sticky
one. But even worse than the use of quantifiers is the negation of a
statement with quantifiers. To a novice, it is incomprehensible to hear
"it is not true that for all &£ there is a & ....". How does a student
show that a set of vectors is not linearly independent? We need to
translate the negation of

"non-zero vectors X, xe,...,xn are linearly

independent vectors in a vector space V over R if and
only if whenever

a,x, + asXy + ... +ax =0 for al,ae,...,an e R

n
then a1 = aa cee = an = 0",

n3
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They are rushing to take notes. They glance at the blackboard, they are
writing something the instructor said a few seconds before,
concentrating on what he or she is saying now. We can help our students
listen and participate in the active thinking process. We can speak
slowly and distinctly (no mumbling to the blackboard allowed). We can
use our voices to stress what is important - especially the little
words. And we can write legibly on the board exactly what we want the
students to be copying in their notebooks. What appears on the board
should be a logical development of an idea reasoned out with active
student participation. No erasing allowed unless there is an error. No
fair substituting x for w by erasing w in an equation they haven’t even
got down yet. Rewrite it where it belongs in the logical sequence.
Pictures should be labelled and used often.

We should allow time for eye contact. We are particularly bad about
this because we always feel the need to get through the syllabus and a
quizzical look might shame us into backtracking. We must stop for
questions often - if no one asks one, be prepared to ask a few of our
own. Get students to summarize the lesson so far or to try a problem
using the newest concepts in an open ended way. Ask "is there a
solution?" instead of "find the solution". "What would happen if we
left out this part of the hypothesis? Can we find a counterexample?"
"Is the converse true?"

Mathematics and notation can be so confusing. One minute the
notation for a function is f. We are to treat f as a transformation.
Then we write f(x), the value of the transformation at a particular
point. Then we take sums, products and roots of the transformations.
Or we operate on them (finding derivatives, for example) to get new
transformations. We need to express to students how we are using the
notation. Studies of student errors show the misconceptions. Being
aware of the pitfalls and the errors in thinking that cause them can
help the instructor to sound the warning. It is no wonder our
colleagues in physics and engineering complain that our students have
trouble dealing with changes in notation. Our students do not really
understand what a variable is! Research (Kaput 1985) into their errors
shows that students dealing with a Mindy’s restaurant type problem
confuse the idea of a variable with the use of the letter to represent
units. They think of a set of cheesecakes consisting of 4C’s for every
55’s in the set of strudels; the multiplier-coefficients become
adjectives in their language so they write 4C = 3S.

Listening is enhanced when there is motivation. We should present
interesting accessible examples before we offer concepts. A good
example will solidify the idea better than any definition. Problems
should be presented before the formal definitions and theorems. There
should be an opportunity for students to play with their ideas before we
formalize and prescribe solutions.

Students have to be helped to understand how to read mathematics. They
are trained to read quickly in many of their other subjects - they would
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never finish the history or philosophy assignment if they were slow.

But being slow is just what we expect when we assign three pages of
mathematics. We figure it could take an hour to properly absorb the
material in such a few pages. Students don’t know that; they barely
skim the material, hardly work the examples and never read it twice -
just go off to do the exercises at the end. Maybe our advice won’t be
heeded, but it is worth a try to tell them that we expect three pages to
take them an hour’s concentrated, active reading with pencil and paper
in use.

Students need to speak mathematics. I have banned the word "it" from
the students’ vocabulary for at least a month at the beginning of a
course. It is amazing what a difference it makes. How do you read u,
oy £, & (could it be the script for the Hebrew letter, lamed?), |x|,

fix), n!, : ? When students cannot read notation aloud, they don’t read

it when they see it in the text, they don’t identify it when you mention
it in class and pretty soon, they are quite lost and frustrated.

2. LEARNING TO DO MATHEMATICS CAND COMMUNICATE IT>

I have used various forms of group work in elementary
courses. Typically, a calculus section at my university has about 25
students. I have taught, or rather the students have taught themselves,
a full syllabus of the course on several occasions using a small group
discovery method. This method, introduced to me by Neil Davidson and
Jerome Dancis at the University of Maryland, requires a great deal in
the way of preparation by the instructor. In a sort of Moore method
approach, the students are given examples to work out with guidance, a
form of programmed prodding toward a solution. When they have worked a
few examples, there is some motivation for a definition, the definition
is presented and the students formulate and prove the theorems. The
essential feature is that the class is divided into groups of 3 or 4 and
during the class period each group must work on the materials. The
instructor circulates among the groups answering questions, helping to
facilitate and clarify the learning. Students are talking, explaining
to others how they think they should proceed, there is arguing and there
are many blind alleys. BUT the students are doing mathematics, they are
listening to each other, they are speaking to each other and they are
active participants. Most important, the teacher sees and can guide the
students’ thought processes. Here is the time for experimentation (try
a few numbers), geometric representation (draw a picture),
generalizations (would this work if...?) and summarizing. My preference
is that every few days each student hand in his or her own notes which I
correct and return promptly. They have nightly reading assignments and
problems to solve alone for homework and frequent quizzes and
examinations. Student evaluations at the end of the course invariably
state their satisfaction with themselves and what they have
accomplished. Some have said, "This is the first time that I felt I
understood mathematics".
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Here is a unique opportunity to encourage women and minority students
who may be reluctant to contribute in class. I have found that the
women have to be told to speak up even in the small groups. At the
beginning they tend to let the men do the talking. The teacher can
direct questions at the reticent ones. They often have a great deal to
offer the group, and the rest of the group soon realizes that everyone
deserves their attention.

Students called upon to speak in class should be required to use
terminology and deductive reasoning consistent with the level of the
course. Although it is a painful experience at first, who would think
of teaching a foreign language without requiring practice in speaking
the language? When students realize the skills they are gaining in
learning to communicate their ideas, they feel very positive about their
classroom experience.

In studying applications and modeling even at the simplest level,
different interpretations of a problem give different answers. When are
two forms of a solution equivalent? If more open-ended problems were
assigned and students were encouraged to work together on a regular
basis, they would be forced to communicate.

Students need to write mathematics. Just as speaking forces them to
confront their difficulty - "I can’t explain it but I know what I
mean."—- writing in sentences to summarize a problem can prompt them to
consider what it is that they are doing. In service courses, frequent
assignments, promptly corrected, are essential. A great deal is
revealed in student papers. First of all, a particularly clever
solution is noticed by the instructor and the student reaps a little
well-deserved praise. Non-standard problems require explanatory
solutions. Communicating clarifies thinking. Correcting assignments
also points up students’ misconceptions. Answers are correct, but
reasoning faulty:

sin 6x 6 sin X 2 sin x . sin éx
m
- = ———— = === hence =~ | -—————- = 2.
3x 3x X > 3x

Two wrongs can make a right:
Suppose that X has a normal distribution with 4 =30 and ¢ = 5. Then

P( X =25) =P (2 < 30 -85 )y =P (2 =<1)=.5- .3413 = ,1587

Naturally, writing in proper sentences with correct grammar should be
expected.

Problem solving is very hard to teach. We can read Polya, we can study
Alan Schoenfeld’s newest work on problem solving, (1983). We can
consult one or many of the new problem books. It can be extremely
difficult to accomplish a lot in a standard lecture classroom. We need
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to assign and discuss multi-stage problems which may take a week or more
to solve. We might, as mentioned above, encourage students to work in
groups on both easy and challenging problems. We should assign problems
which are best solved with a variety of techniques including methods
making use of calculators and computers. We should ask questions which
probe the conceptual bases- asking "Is it true that...?", "Find an
example of ...", "Is it possible to ...?".

Perhaps paramount in helping students learn to think is the example the
instructor presents in his or her own approach to problems. Neat, pat,
and carefully prepared solutions to complicated problems are not as
helpful as thinking out loud, occasionally showing a blind alley,
analyzing by using problem solving strategy (draw a picture, try a few
numbers,...), and bringing the enormous power of computer software into
the classroom. Some of my colleagues argue that they have no time to
use the available software with their elementary classes because the
course outline is so demanding. It is obvious that all this
communication requires time so that we may have to shorten the syllabi
which have trapped both faculty and students with frustration. Surely
it is better for students to have a solid understanding of the most
basic concepts than to have a superficial acquaintance with lots of
topics.

We would be remiss if we did not attempt to use symbolic manipulators in
many service courses. Such algebraic systems, now available on
microcomputers and hand calculators, allow for exploration and
experimentation with complex problems. They represent the way
non-mathematics majors (especially) will be doing mathematics in the
future. Many of the factoring problems, the techniques of integration,
complicated derivatives are quite beside the point for these students.
They realize it too. .Frequently, they are more conversant with
computers than is their mathematics instructor. Those who have
experimented report very satisfactory results. Research in this area
continues at several US and Canadian colleges and universities.

3. LEARNING TO RELATE TO MATHEMATICS

There are many excellent resources available stressing the
mathematics of the real world. Publications of the National Council of
Teachers of Mathematics in the US, the new TEAM materials which include
workbooks and videotapes (available from the MAA) and the wonderful
COMAP modules (and newly produced videos) edited by Sol Garfunkel (see
references) present realistic situations in which undergraduate
mathematics is used. These are available for use in the classroom, or
for extra assignments for the students themselves. They can be read by
instructors and presented as examples even in large lecture classes.
The role of mathematical models in the physical, biological, and social
sciences can help students feel that the subject we teach is for them.
Models in medicine, chemistry, economics, demography, voting and
business can even make learning fun. Students reveal that they
appreciate the time and concern that is shown by the instructor who
makes the effort to present these applications.
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Students can be given the responsibility of reading material using
mathematics in journals of their own disciplines or of preparing term
papers on their own ideas of how mathematics can be applied to another
field. Sharing these with the rest of the class gives a sense of
immediacy and relevance to the mathematics in the course.

4, LEARNING TO LEARN MATHEMATICS

If we are able to help our students communicate, think and
relate concepts to realistic situations, we have gone a long way in
helping them learn how to learn. By making them self reliant, giving
them the confidence to try solving something they have never seen
before, we greatly enhance the possibility that they will be able to
learn new ideas.

We probably need to do some ambassadorial work as well. Students
frequently say that in their major courses (for which they were required
to take mathematics) instructors avoid using mathematics. This is
particularly true in the social and biological sciences in many schools.
It may be that the faculty themselves feel insecure with their own
mathematical skills, but we can be of help if we approach our
colleagues, ask for a consultation, and discuss what they want for their
students. This can be extraordinarily interesting. When I met with the
folks in our department of health science, I found that they wanted
topics in our courses that are not in the standard textbooks, while they
were perfectly happy to drop some other material which they felt was
outdated in the practice of their field. This personal relationship
between the departments can go a long way in showing the students that
mathematics is not an esoteric, irrelevant and incomprehensible
discipline.

At an advanced level, student teams working under faculty

supervision to solve industrial problems reap many benefits. At our
institution, the Applied Mathematics Laboratory accepts industrial
projects which are suitable for one year’s work. Students and faculty
in mathematics are frequently teamed with those from other departments
to solve applied problems. Professional oral and written reports are
provided to the sponsor by the team. Faculty advisors learn about
applications of mathematics and they see opportunities for research in
mathematics. Other departments in the university and other industries
recognize that mathematics is applicable in a wide variety of
interesting situations.

Clearly, much research in mathematics education is needed. How can
teaching modalities change attitudes and achievement of the service
course student? Do students who are interested in science learn
differently from those who are in the social sciences or business? Can
we teach algorithmic (constructionist) thinking at the same time that we
teach the more standard mathematical thinking patterns? A recent
article by Don Knuth in the American Mathematical Monthly (Knuth 1983)
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attempts to consider the similarities and differences in the two.
Finally, the need for resources to allow for small classes, use of
computer technology, and research in learning is severe. Conferences
such as this one, however, can influence the improvement of the
mathematical experience of the millions of students who sit before us in
their obligation to their own academic interest.
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A FINAL STATEMENT

Mathematics is of increasing importance in all sciences and
in everyday life. It is an essential part of the general culture
needed by every citizen in order to understand our world and treat in-
formation and data with a critical mind. It is already an essential
tool for many professions and will become necessary for many more in
the future.

Mathematics has therefore to be taught to many students whom mathe-
maticians have not considered before — to students of subjects as
widely differentiated as home economics and biology. Even in the
fields where a mathematical education is a tradition - such as physics
and engineering - many changes are necessary. Advances in mathematical
and computational tools make mechanical techniques and even skills less
important than before. Mathematical understanding becomes even more
crucial when students and professionals use computers, symbolic manipu-
lation systems, computer graphics and other kinds of new technology.
For the same reasons continuing education demands an increasingly
important role. The successful design of mathematical courses to meet
these needs requires an increased degree of understanding and coopera-
tion between mathematics teachers and those in other disciplines.

All mathematicians must be aware that the future of mathematics as a
science depends on the way they respond to these new needs coming from
other disciplines and from society as a whole.

Public opinion and governments should be made aware of the urgency of
meeting these new needs. The status of service teaching and service
teachers must be improved. New appointments, new means and increased
resources are vital.
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